Abstract — A generic semi-analytical approach is proposed for the self-consistent analysis of combinatorial frequency generation in stacks of binary nonlinear layers illuminated by a pair of pump waves. It is shown that the quasi-periodic stacks can be treated as the defected periodic structures with the defect located at the specific positions determined by a particular layer sequence. The developed technique combining the Harmonic Balance and Transfer Matrix Methods is illustrated by the cases of periodic and quasi-periodic (Fibonacci and Thue-Morse type) stacks of nonlinear dielectric layers.

1. G. D’Aguanno et al, Photonic band edge effects in finite structures and applications to c(2) interactions, Phys Rev E 64, 016609, 2001.

This use of this work is restricted solely for academic purposes. The author of this work owns the copyright and no reproduction in any form is permitted without written permission by the author
Modified Transfer Matrix Method for the Problems of Nonlinear Scattering by Periodic and Quasi-Periodic Layered Structures

Oksana Shramkova & Alex Schuchinsky
Queen’s University Belfast, UK
Outline

- Introduction
- Problem statement & assumptions
- Solution framework
- Periodic and quasi-periodic (Fibonacci and Thue-Morse) stacks
- Primitive cells and defects in Fibonacci and Thue-Morse stacks
- Simulation examples
- Concluding remarks

© A Schuchinsky
Periodic Stack

q unit cells with alternating A and B

\[L_q = q(d_A + d_B) \]

Electric displacement in nonlinear anisotropic dielectric layers:

\[
D_{n}^{A,B} = \varepsilon_0 \left(\varepsilon_{nm}^{A,B} + \chi_{nmk}^{A,B} E_{k}^{A,B} \right) E_{m}^{A,B}
\]

\[
\hat{\varepsilon}^{A,B} = \left(\varepsilon_{xx}^{A,B}, \varepsilon_{xx}^{A,B}, \varepsilon_{zz}^{A,B} \right)
\]

\[
\hat{\chi}^{A,B} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & \chi_{xxz} & 0 \\
0 & 0 & 0 & \chi_{xxz} & 0 & 0 & 0 \\
\chi_{zxx} & \chi_{zxx} & \chi_{zzz} & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Quasi-Periodic Stacks

Fibonacci stack of order q

$S_q = \{S_{q-1} \cup S_{q-2}\}$, $S_1 = \{A\}$, $S_2 = \{AB\}$

$S_{q} = \{A\}$, $S_{2} = \{AB\}$

$L_{q} = L_{q-1} + L_{q-2}$

$L_1 = d_A$, $L_2 = d = d_A + d_B$

Thue-Morse stack of order q

$Q_q = \{Q_{q-1} \cup Q'_{q-1}\}$ & $Q'_{q} = \{Q'_{q-1} \cup Q_{q-1}\}$

$Q_0 = \{A\}$, $Q'_0 = \{B\}$

$L_{q} = 2L_{q-1}$

$L_1 = d = d_A + d_B$
Two TM plane waves of frequencies ω_1 and ω_2 are incident on the stacks at angles Θ_{i1} and Θ_{i2}

Nonlinearity is assumed weak and the three-wave mixing process is dominant

The problem is linearized by harmonic balance method to obtain combinatorial frequency fields

In the non-depleting wave approximation the fields are determined recursively at each frequency

- Pump waves: only reflected and refracted fields
- Combinatorial frequencies: excited & scattered fields
Linearized Problem

In the three-wave mixing process, fields $H_y(\omega)$ of TM waves satisfy Helmholtz equation in each layer A and B at pump $\omega_{1,2}$ and combinatorial $\omega_3=\omega_1+\omega_2$ frequencies:

$$
\left(\frac{\partial^2}{\varepsilon_{xx} \partial z^2} + k_p^2 - \frac{k_{xp}^2}{\varepsilon_{zz}} \right) H_y(\omega_p) = \begin{cases}
0, & p = 1, 2 \\
8\pi k_3 \left[\frac{\partial}{\partial x} \left(\frac{\chi_{xxx}}{\varepsilon_{zz}} E_x(\omega_1) E_x(\omega_2) + \frac{\chi_{zzz}}{\varepsilon_{zz}} E_z(\omega_1) E_z(\omega_2) \right) - \\
\frac{\chi_{xxz}}{2\varepsilon_{xx}} \frac{\partial}{\partial z} \left(E_x(\omega_1) E_z(\omega_2) + E_x(\omega_2) E_z(\omega_1) \right) \right], & p = 3
\end{cases}
$$

where

$$
k_p = \omega_p / c, \quad k_{x1,x2} = k_{1,2} \sqrt{\varepsilon_a} \sin \Theta_{i1,i2}$$

$$
k_{x3} = k_{x1} + k_{x2} = k_3 \sqrt{\varepsilon_a} \sin \Theta_3$$
Solution of the Linearized Problem

In a layer of type $j=A, B$ in n^{th} primitive cell:

- At pump wave frequencies $\omega_{1,2}$
 \[H_{yj}^{(n)}(\omega_p) = \left[B_{pj}^{n+} e^{ik_{zj}^{(p)} z} + B_{pj}^{n-} e^{-ik_{zj}^{(p)} z} \right] e^{-i\omega_p t + ik_{zp} x}, \quad p = 1, 2 \]

- At combinatorial frequency ω_3
 \[H_{yj}^{(n)}(\omega_3) = \left(B_{3 j}^{n+} e^{ik_{zj}^{(3)} z} + B_{3 j}^{n-} e^{-ik_{zj}^{(3)} z} + D_{1j}^{n+} e^{ik_{zj}^{+} z} + D_{2j}^{n+} e^{-ik_{zj}^{+} z} + D_{1j}^{n-} e^{ik_{zj}^{-} z} + D_{2j}^{n-} e^{-ik_{zj}^{-} z} \right) e^{-i\omega_3 t + ik_{z3} x}, \]

where

\[B_{pj}^{n\pm} = B_j^{n\pm}(\omega_p), \quad k_{zj}^\pm = k_{zj}^{(1)} \pm k_{zj}^{(2)}, \quad k_{zj}^{(p)} = \sqrt{\varepsilon_{xj} \left(k_p^2 - k_{zp}^2 / \varepsilon_{zzj} \right)}, \quad p = 1, 2, 3 \]

\[D_{1j}^{n+} = \alpha_j \beta_j \frac{B_{1j}^{n+} B_{2j}^{n+}}{(k_{zLj}^+)^2 - (k_{zLj}^{(3)})^2}, \quad D_{2j}^{n+} = \alpha_j \beta_j \frac{B_{1j}^{n-} B_{2j}^{n-}}{(k_{zLj}^+)^2 - (k_{zLj}^{(3)})^2} \]

\[D_{1j}^{n-} = \alpha_j \gamma_j \frac{B_{1j}^{n+} B_{2j}^{n-}}{(k_{zLj}^-)^2 - (k_{zLj}^{(3)})^2}, \quad D_{2j}^{n-} = \alpha_j \gamma_j \frac{B_{1j}^{n-} B_{2j}^{n-}}{(k_{zLj}^-)^2 - (k_{zLj}^{(3)})^2} \]
Amplitude Coefficients $B_{j}^{n\pm}(\omega_{p})$

The problem has been reduced to evaluating amplitudes of waves refracted into a layer of type $j = A, B$ in an n^{th} primitive cell of the stack.

$$B_{j}^{n\pm}(\omega_{p}) = \left(\eta_{j11}^{(n-1)}(\omega_{p}) \pm \frac{k_{p}}{k_{zLj}} \varepsilon_{xxj} \eta_{j21}^{(n-1)}(\omega_{p}) \right) \left[1 + R(\omega_{p}) \right] +$$

$$+ \frac{k_{zLj}}{k_{p} \varepsilon_{a}} \left(\eta_{j12}^{(n-1)}(\omega_{p}) \pm \frac{k_{p}}{k_{zLj}} \varepsilon_{xxj} \eta_{j22}^{(n-1)}(\omega_{p}) \right) \left[1 - R(\omega_{p}) \right]$$

where $R(\omega_{p})$ - the reflection coefficient of the stack;

$\eta_{j}^{(n-1)}(\omega_{p})$ - the transfer matrices of a subset of $(n - 1)$ primitive cells preceding the layer of type j in the n^{th} primitive cell.
Emission Coefficients

Amplitudes of the combinatorial frequency emission in the reverse (F_r) and forward (F_t) directions

$$F_r = \left(\frac{k_3 \varepsilon_a}{k_{za}^{(3)}} \tilde{\eta}_{N_q} (\omega_3)_{2,1} + \tilde{\eta}_{N_q} (\omega_3)_{2,2}\right) \lambda_1 - \left(\frac{k_3 \varepsilon_a}{k_{za}^{(3)}} \tilde{\eta}_{N_q} (\omega_3)_{1,1} + \tilde{\eta}_{N_q} (\omega_3)_{1,2}\right) \lambda_2,$$

$$F_t = -\left(\lambda_1 + \lambda_2 \frac{k_3 \varepsilon_a}{k_{za}^{(3)}}\right),$$

where $\tilde{\eta}_{N_q} (\omega_3)$ - a transfer matrix of the whole stack containing N_q primitive cells

$$\lambda_{1,2} = \sum_{n=1}^{N_q} f \left(\tilde{\eta}_j^{(n)} (\omega_3), D_{1j}^{n\pm}, D_{2j}^{n\pm}\right)$$
The transfer matrices of the stack and any its subset depend on
- Stack configuration and layer sequence
- Transfer matrices of the constituent layers

The transfer matrices are to be calculated at each frequency: both pump waves and mixing products

The transfer matrices at frequency ω_3 are used in the expression of $F_{r,t}$ and $B_j^{n\pm}(\omega_3)$
Regular Periodic Stacks

- Transfer matrices for
 - Stack of n unit cell: \[\hat{\eta}_A^{(n)} = \hat{\eta}_n = \left[\hat{m}_{LA}(\omega_3) \hat{m}_{LB}(\omega_3) \right]^n \]
 - 1st layer in n unit cell stack: \[\hat{\eta}_B^{(n)} = \hat{\eta}_{n-1} \hat{m}_{LA}(\omega_3) \]
 - Layers A and B: \[\hat{m}_{LA}(\omega_3) \text{ and } \hat{m}_{LB}(\omega_3) \]

- Transfer matrices $\hat{\eta}_j^{(n)}$ have closed form relating $\hat{\eta}_1$ with Bloch phase in periodic stacks
- There is no advantage of using the closed form here – fields must be calculated inside each layer
- The recursive relation for \[\hat{\eta}_n = \hat{\eta}_{n-1} \left[\hat{m}_{LA}(\omega_3) \hat{m}_{LB}(\omega_3) \right] \]
Quasi-Periodic Stacks

Transfer matrices for Fibonacci & Thue-Morse stacks are defined by the recursive relations

Fibonacci stacks of order \(q \geq 2 \)

\[S_q = \{ S_{q-1} \cup S_{q-2} \}, \quad S_1 = \{ A \}, \quad S_2 = \{ AB \} \]

Transfer matrix

\[\hat{M}_q (\omega_p) = \hat{M}_{q-1} (\omega_p) \hat{M}_{q-2} (\omega_p) \]

where

\[\hat{M}_0 (\omega_p) = \hat{m}_{LB} (d_B, \omega_p), \quad \hat{M}_1 (\omega_p) = \hat{m}_{LA} (d_A, \omega_p); \]

Examples:

\[S_5 = \{ AB AAB AB A A \} \]
\[S_6 = \{ AB AAB AB AAB AAB \} \]

Thue-Morse stacks of order \(q \geq 1 \)

\[Q_q = \{ Q_{q-1} \cup Q'_{q-1} \} \quad & \quad Q'_q = \{ Q'_{q-1} \cup Q_{q-1} \} \]

\[Q_0 = \{ A \}, \quad Q'_0 = \{ B \} \]

Transfer matrices

\[\hat{M}_q (\omega_p) = \hat{M}_{q-1} (\omega_p) \hat{M}'_{q-1} (\omega_p) \]

\[\hat{M}'_q (\omega_p) = \hat{M}'_{q-1} (\omega_p) \hat{M}_q (\omega_p) \]

\[\hat{M}_0 (\omega_p) = \hat{m}_{LA} (d_A, \omega_p), \quad \hat{M}'_0 (\omega_p) = \hat{m}_{LB} (d_B, \omega_p) \]

Examples:

\[Q_3 = \{ AB BA BA AB \} \]
\[Q_4 = \{ AB BA BA AB \} \]

Defective cells
Fibonacci & Thue-Morse stacks can be treated like periodic stacks with defects

Fibonacci stacks

\[S_5 = \{ AB \ A'B \ AB \ A \} \]
\[S_6 = \{ AB \ A'B \ AB \ A'B \ A'B \} \]

- Two types of primitive cells:
 - regular \{AB\}
 - “defective” \{A'B\}
- Layer A' in “defective” cells is a doublet \(A' = AA\) with \(d'_A = 2d_A\)
- Both “regular and “defective” cells have the layers in the same order

Thue-Morse stacks

\[Q_3 = \{ AB \ BA \ BA \ AB \} \]
\[Q_4 = \{ AB \ BA \ BA \ AB \ BA \ AB \ BA \ AB \ BA \} \]

- Two types of primitive cells:
 - regular \{AB\}
 - “defective” \{BA\}
- Layers A and B in “defective” cells are interchanged
- Both “regular and “defective” cells have the same thickness \(d = d_A + d_B\)

Positions of “defective” cells in the stacks are to be determined
Primitive Cells in Thue-Morse Stacks

- The number of primitive cells in a stack of order q:
 \[N_q = 2^{q-1} \]

- The positions of the regular and defective cells are determined by their serial number n using the following recurrence relation at $n \geq 3$
 \[
 t_n = \begin{cases}
 1 - t_{n-1}, & n \text{ odd} \\
 t\left(\frac{n-1}{2} + 1\right), & n \text{ even}
 \end{cases}
 \]
 where $t_n = 0$ for the regular cell $\{AB\}$
 $t_n = 1$ for defective cells $\{BA\}$
 $t_1 = 0$, $t_2 = 1$
Primitive Cells in Fibonacci Stacks

The number of primitive cells in a stack of order q:

$$N_q = \begin{cases}
\frac{\Phi_{q+1} - \Gamma_q}{2}, & q \text{ even} \\
\frac{\Phi_{q+1} - \Gamma_q - 1}{2}, & q \text{ odd}
\end{cases}$$

where $\Phi_q = \Phi_{q-1} + \Phi_{q-2}$ is Fibonacci number, $\Phi_1 = \Phi_2 = 1$

The number of “defective” cells Γ_q: $\Gamma_q = 0$ at $q \leq 3$ and at $q \geq 4$

$$\Gamma_q = \begin{cases}
\left(\frac{3 + \sqrt{5}}{2}\right)^{q-1} - \left(\frac{3 - \sqrt{5}}{2}\right)^{q-1}, & q \text{ even} \\
\sqrt{5}^q, & q \text{ odd}
\end{cases}$$
“Defective” Cells in Fibonacci Stacks

Positions of additional A layers in Fibonacci stack of order q are defined by a row-matrix \widehat{P}_q of length Φ_{q+1} with 1’s in the columns for the first A layer of the doublets:

$$S_6 = \{AB \ AAB \ AB \ AAB \ AAB\}$$

$$\widehat{P}_6 = [00 \ 100 \ 00 \ 100 \ 100]$$

\widehat{P}_q is defined by the recurrence relations:

$$\widehat{P}_q = \widehat{P}_{q-1} + \widehat{P}_{q-2} \widehat{\Phi}(\Phi_q) + \begin{cases} \widehat{u}(\Phi_q), & q - \text{even} \\ 0, & q - \text{odd} \end{cases}$$

where $\widehat{u}(\Phi_q) = \{\delta_{i,\Phi_q}\}$ is a row-matrix with 1’s in Φ_q column only; $\widehat{\Phi}(\Phi_q) = \{\delta_{i+\Phi_q,j}\}$ is a square Toeplitz matrix with 1’s only at the secondary diagonal offset for Φ_q from the main diagonal.
Stack Reflectance: QPS vs Periodic

Periodic \(q=16 \)

- Periodic \(q=16 \) (32 layers, \(d_B=13\mu m \))
- Fibonacci \(S_8 \) (34 layers, \(d_B=12\mu m \))
- Thue-Morse \(Q_5 \) (32 layers, \(d_B=13\mu m \))

- \(\Theta_i = 30^\circ \) (dashed lines)
- \(\Theta_i = 45^\circ \) (solid lines)

\[d_A = d_B \left(1 + \sqrt{5}\right)/2 \]
ω_3 Emission: QPS vs Periodic

Fibonacci S_8 (34 layers, $d_B=12\mu m$)

Thue-Morse Q_5 (32 layers, $d_B=13\mu m$)

Periodic $q=16$ (32 layers, $d_B=13\mu m$)

$\Theta_{i1} = 30^\circ$, $\Theta_{i2} = 45^\circ$; $d_A = d_B \left(1 + \sqrt{5}\right)/2$

$|F_r|$ - solid lines

$|F_t|$ - dashed lines

© A Schuchinsky

20 May 2014
Effect of Loss

Fibonacci S_8: 34 layers, $d_B=12\mu m$

Thue-Morse Q_5: 32 layers, $d_B=13\mu m$

$\tan \delta = 0.01$

$\Theta_{i1} = 30^\circ$, $\Theta_{i2} = 45^\circ$;
Concluding Remarks

- The semi-analytical approach to modelling combinatorial frequency generation by periodic and quasi-periodic multilayers has been developed.
- The technique provides a unified framework for the analysis of periodic and quasi-periodic stacks.
- It is shown that Fibonacci and Thue-Morse stacks can be treated like periodic structures with defects.
- The developed theory is illustrated by simulations and provides an insight in the mechanisms of three-wave frequency mixing in the binary stacks.