A Very Small Triangular Shaped Printed Monopole Antenna For Bluetooth/WLAN and UWB Applications

Praveen V. Naidu and Akshay Malhotra
Centre for radio science studies, Symbiosis International University (DU), Pune, India - 412115.
praveennaidu468@gmail.com

Abstract: - In this paper, a compact (12 x 20 mm²) triangular shaped microstrip antenna with dual band characteristics is presented for Bluetooth/WLAN and ultrawideband (UWB) applications. The proposed structure consists of a simple triangular shaped radiating patch for achieving UWB characteristics and quarter wavelength inverted L shaped strip for achieving 2.45 GHz Bluetooth applications. The first operating band characteristics can be controlled by changing the electrical length of the strip along with coupling gap between the patch and strip. To enhance the impedance bandwidth of second operating band, an equilateral triangular shaped cut has been introduced in the patch. The results demonstrate that the proposed antenna exhibit dual frequency operation from 2.4 to 2.52 GHz and from 3.6 to 10.6 GHz. The antenna has omnidirectional radiation patterns in H-plane, bidirectional patterns in E-plane and acceptable peak gains and radiation efficiencies.

Keywords: - monopole antenna, dual-band antenna, bluetooth, UWB antenna and wireless local area network (WLAN).

References:

This use of this work is restricted solely for academic purposes. The author of this work owns the copyright and no reproduction in any form is permitted without written permission by the author.
Why Compact Antennas?

Why Multi-band Antennas?
Literature Review

<table>
<thead>
<tr>
<th>S.No</th>
<th>Reference</th>
<th>Type</th>
<th>Antenna Size</th>
<th>Measured Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ref[1]</td>
<td>Single-Band</td>
<td>120 x 100 mm²</td>
<td>3.1-10.6 GHz</td>
</tr>
<tr>
<td>2.</td>
<td>Ref[2]</td>
<td>Single-Band</td>
<td>70 x 70 mm²</td>
<td>3.1 – 10.6 GHz</td>
</tr>
<tr>
<td>3.</td>
<td>Ref[3]</td>
<td>Single-Band</td>
<td>30 x 35 mm²</td>
<td>3.1-5.2 GHz</td>
</tr>
<tr>
<td>4.</td>
<td>Ref[4]</td>
<td>Dual-Band</td>
<td>45 x 32 mm²</td>
<td>2.4-2.5 GHz and 3.1-10.6 GHz</td>
</tr>
<tr>
<td>5.</td>
<td>Ref[5]</td>
<td>Dual-Band</td>
<td>42 x 46 mm²</td>
<td>2.4-2.484 GHz and 3.1-10.6 GHz</td>
</tr>
<tr>
<td>7.</td>
<td>Ref[7]</td>
<td>Dual-Band</td>
<td>18 x 32 mm²</td>
<td>2.470-2.520 GHz and 3.1-10.6 GHz</td>
</tr>
<tr>
<td>8.</td>
<td>Ref[8]</td>
<td>Tri-Band</td>
<td>50 x 24 mm²</td>
<td>2.4-2.484 GHz, 3.1-5.15 GHz and 5.825-10.6 GHz</td>
</tr>
<tr>
<td>9.</td>
<td>Ref[9]</td>
<td>Dual-Band</td>
<td>42 x 24 mm²</td>
<td>2.4-2.484 GHz and 3.1-10.6 GHz</td>
</tr>
<tr>
<td>10.</td>
<td>Ref[10]</td>
<td>Dual-Band</td>
<td>40 x 32 mm²</td>
<td>2.4-2.484 GHz and 3.1-10.6 GHz</td>
</tr>
<tr>
<td>12.</td>
<td>Ref[12]</td>
<td>Dual-Band</td>
<td>40 x 40 mm²</td>
<td>2.4-2.485 GHz and 5.15-5.825 GHz</td>
</tr>
<tr>
<td>S.No</td>
<td>Reference</td>
<td>Type</td>
<td>Antenna Size</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>13.</td>
<td>Ref[13]</td>
<td>Dual-Band</td>
<td>75 x 75 mm²</td>
<td>2.4–2.484 GHz and 5.150–5.950 GHz</td>
</tr>
<tr>
<td>14.</td>
<td>Ref[14]</td>
<td>Dual-Band</td>
<td>40 x 40 mm²</td>
<td>3.15–3.70 GHz and 5.05–5.97 GHz</td>
</tr>
<tr>
<td>15.</td>
<td>Ref[15]</td>
<td>Dual-Band</td>
<td>60 x 45 mm²</td>
<td>2.26-2.57 GHz and 4.81-6.56 GHz</td>
</tr>
<tr>
<td>16.</td>
<td>Ref[16]</td>
<td>Dual-Band</td>
<td>50 x 50 mm²</td>
<td>1.9–2.75 GHz and 3.65–6.75 GHz</td>
</tr>
<tr>
<td>17.</td>
<td>Ref[17]</td>
<td>Dual-Band</td>
<td>60 x 70 mm²</td>
<td>3.34–3.54 GHz and 4.90–6.26 GHz</td>
</tr>
<tr>
<td>18.</td>
<td>Ref[18]</td>
<td>Dual-Band</td>
<td>50 x 50 mm²</td>
<td>2384–2991 MHz and 4959–6410 MHz</td>
</tr>
<tr>
<td>19.</td>
<td>Proposed antenna</td>
<td>Dual-Band</td>
<td>12 x 20 mm²</td>
<td>2.4-2.5 GHz and 3.1-10.6 GHz</td>
</tr>
</tbody>
</table>

Praveen Vummadisetty, Naidu
1. Reducing the antenna size

2. With good antenna characteristics
Geometry of the Proposed Antenna

The optimized dimensions $W = 12$, $L = 20$, $L_1 = 8.5$, $L_2 = 9.1$, $W_1 = 2$, $W_2 = 9.5$, $W_3 = 11.8$, $L_3 = 3.1$, $W_4 = 8.6$, $L_4 = 4$, $L_5 = 4.5$, $L_6 = 10.6$, $g = 1$, $\theta = 60^\circ$, (all dimensions are in mm).
Antenna Evolution Stages

[Diagram showing three stages of antenna evolution with corresponding return loss graphs]
Design Analysis

Frequency (GHz)

Z11 impedance real part (in ohms)

Z11 impedance imaginary part (in ohms)

Ant #1
Ant #2
Ant #3 (proposed)

Praveen Vummadisetty, Naidu
Mathematical Analysis

\[L_6 = \frac{c}{4f_{2\text{min}} \sqrt{\varepsilon_{r,\text{eff}}}} \] \hspace{1cm} (1) \hspace{1cm} L_5 = \frac{c}{4f_{2\text{max}} \sqrt{\varepsilon_{r,\text{eff}}}} \] \hspace{1cm} (2)

\[f_1 = \frac{c}{4Y_1 \sqrt{\varepsilon_{r,\text{eff}}}} \] \hspace{1cm} (3) \hspace{1cm} \varepsilon_{r,\text{eff}} = \frac{\varepsilon_r + 1}{2} \] \hspace{1cm} (4)
Parametric Study

Return loss S11 (dB)

Frequency (GHz)

Y1 = L2 + W2 + L3

Y1 = 20.7 mm
Y1 = 21.7 mm
Y1 = 22.7 mm

Praveen Vummadisetty, Naidu
Measured Radiation Patterns

E-plane

H-plane

Praveen Vummadi setty. Naidu
Peak Gains and Radiation Efficiency
References

PraveenVummadisetty.Naidu

Acknowledgment

• Thanks to DST-SERB, Government of India, for providing financial assistance.

• Vice-chancellor, Symbiosis International University (DU), Pune, India.

• Thanks to PIERS2015, Prague, Editorial Board Members and Reviewers.
THANK YOU