Metamaterial Antennas: From Physics To Designs

Zhi Ning Chen
Professor
National University of Singapore

Advisor
Institute for Infocomm Research, Singapore

Acknowledgements:
Dr Xianming Qing
Dr Liu Wei
Dr Lau Pui Yi
Dr Sun Mei
Dr Amir Khurrum Rashid
Mr Goh Chean Khan
CHEN Zhi Ning, PhDs
陈志宁

Professor, Department of Electrical and Computer Engineering
National University of Singapore

Fellow, IEEE
Distinguished Lecturer, IEEE AP-S
Associate Editor, IEEE Trans AP
Member, IEEE AP-S Fellow Committee

Advisor & Principal Scientist, Institute for Infocomm Research
Agency of Science, Technology and Research, Singapore

Founding General Chairs, iWAT, IS 3T-in-3A, APCAP, IMWF

Current research interest: applied electromagnetic, metamaterials, and antennas for microwave, mmW, submmW, and THz systems.

140 keynotes & invited talks, 400 papers, 4 books, 31 patents, 28 licenses
In this talk,

- **Background**
 - Brief History Review
 - Potentials & Challenges in Antenna Engineering
 - State-of-the-art Designs

- Rethinking
 - Strategy
 - Metamaterial-based Antennas
 - Case study

- Comments
Background Information:

Brief Historic Review

Artificial dielectric by Kock in 1948\(^1\)

Experimental NIM by Smith in 2001

Artificial Molecules in NIM by Pendry in 2000\(^2\)

Transmission-line based NIM by Eleftheriades in 2002

1. The term artificial dielectric was originated by Winston E. Kock in 1948 when he was employed by Bell Laboratories.
2. J. B. Pendry, “Metamaterials and the Control of Electromagnetic Fields”
In 2000, Sir Pendry published a short but explosive paper in PRL explaining the theoretical possibility of a perfect lens.

Negative Refraction Makes a Perfect Lens

Figure 1. A negative refractive index medium bends light to a negative angle with the surface normal. Light formerly diverging from a point source is set in reverse and converges back to a point. Released from the medium the light reaches a focus for a second time.

Background Information: Brief Historic Review

Working in Quadrant III

Notes: This idea proposed 40 years earlier by the Russian scientist Victor Veselago, who suggested that a material with a negative refractive index—never seen in nature—could produce an almost magical lens capable of creating images at a resolution finer than the wavelength of light being used. After that, the work related to metamaterials have been majorly focused double-negative materials.
Background Information: Brief Historic Review

Updates of Publications since 2000

1 March 2014 by Google Scholar
Metamaterials: 44,812
Metamaterial Antennas: 23,628
Meta-Ant/MetaM: 53%
Background Information:

Potentials in EM Engineering

Frequency ranging from microwave, THz to optical:

1. Shielding,
2. Low-reflection materials (absorber),
3. Novel substrates/superstrate,
4. Antennas/sensors,
5. Electronic switches,
6. “Perfect lenses,”
7. Resonators, and
8. etc.
Background Information:

Potentials in Antenna Engineering

To improve antenna design by:

- Lowering antenna profile (conformal/flexible)
- Reducing antenna volume/weight/cost
- Widening bandwidth (impedance/phase/gain)
- Enhancing gain (efficiency/directivity)
- Suppressing mutual coupling
- Widening operating frequency tuning range
- Achieving controllable beam (shaping/steering/lobe)
Background Information:

Potentials in Antenna Engineering: Features

<table>
<thead>
<tr>
<th>meta</th>
<th>Double Negative (DNG) Material $\rightarrow (\varepsilon<0 \ & \ \mu<0)$ 1960’s & 2000’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Artificial Complex Impedance Surface $\rightarrow Z_s = j\omega L/(1 - \omega^2 LC)$ 1940’s, 1970’s, 1990’s & 2000’s</td>
</tr>
<tr>
<td>features</td>
<td>Left-hand/negative index of refraction (NIR)</td>
</tr>
<tr>
<td></td>
<td>Much less than a wavelength with backward propagation</td>
</tr>
<tr>
<td></td>
<td>Narrow bandwidth</td>
</tr>
<tr>
<td>applications</td>
<td>Electromagnetic bandgap (EBG) surface with pass/stop bands</td>
</tr>
<tr>
<td></td>
<td>Tunable impedance surface (TIS) with controllable reflection phase of 0-180°</td>
</tr>
<tr>
<td></td>
<td>On order of one half wavelength or more</td>
</tr>
<tr>
<td></td>
<td>Narrow/moderate operating bandwidth</td>
</tr>
<tr>
<td></td>
<td>DNI lens for high directivity</td>
</tr>
<tr>
<td></td>
<td>Zeroth order resonant antenna with reduced size</td>
</tr>
<tr>
<td></td>
<td>Series-fed array with improved beam-squint</td>
</tr>
<tr>
<td></td>
<td>Shell of antenna element</td>
</tr>
<tr>
<td></td>
<td>Patch antenna: directivity/efficiency</td>
</tr>
<tr>
<td></td>
<td>Dipole with reflector: directivity/efficiency/low profile</td>
</tr>
<tr>
<td></td>
<td>Waveguide/reflectors/horn antenna: directivity</td>
</tr>
<tr>
<td></td>
<td>FSS</td>
</tr>
</tbody>
</table>

Left/right handed scanning leaky wave antennas
Background Information:

Challenges in Antenna Engineering: **General**

- **Electrical:**
 - **Bandwidths:** performance of interest
 - **Gain:** directivity & efficiency
 - **Others:** polarization, isolation, beamwidth, etc.

- **Mechanical:**
 - **Size:** volume/conformal/low-profile
 - **Integration:** with other circuits
 - **Others:** robustness, lightweight, etc.

- **Commercialization** (mass production):
 - **Cost** (materials/process/fabrication & installation)
Background Information: Challenges in Antenna Engineering: *Analysis*

<table>
<thead>
<tr>
<th>Antennas</th>
<th>Metamaterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidths: impedance/gain</td>
<td>Difficult but Possible</td>
</tr>
<tr>
<td>Gain: directivity & efficiency</td>
<td>Yes & Difficult</td>
</tr>
<tr>
<td>Size: volume/conformal/low-profile</td>
<td>Promising*</td>
</tr>
<tr>
<td>Integration: with other circuits</td>
<td>Promising</td>
</tr>
<tr>
<td>Cost: mass production (fabrication & materials)</td>
<td>Possible</td>
</tr>
<tr>
<td>Overall</td>
<td>Promising 😊</td>
</tr>
</tbody>
</table>

overall size against gain and bandwidth
State-of-the-arts in Antenna Engineering: Example

- **dipole/monopole/inverted-L/patch antenna:**
 - high directivity & beam control

 Used as superstrate (cover/lens/radome)

- **Dipole/monopole/inverted-L antenna:**
 - low profile & high directivity

- **Patch antenna:**
 - high directivity & efficiency & low coupling

Used as substrate (with ground plane)

- Artifical surfaces with controllable reflection phase
- Artificial magnetic conductors (AMC)
- Electromagnetic bandgap (EBG) surfaces
Background Information:

State-of-the-arts in Antenna Engineering (incomplete)

- Suppression of inter-element mutual coupling: MIMO
- Low profile of antennas: Cellular base-stations
- Miniaturization of antennas (e.g. zero/negative-order resonator): Portable devices
- High gain for antennas with planar lens: horns/patch
- High gain of antennas with zero-index loading: Vivadi@60GHz
- Composite Right/Left-handed TL/LW antennas: Beam-steering arrays
- Zero-phase-shift-line loop antennas: RFID
- Controllable active metasurface arrays: Satellite

Notes: Many metamaterials-based technologies have been explored for antenna design. The incomplete list shows the technologies and their applications which have been claimed by the researchers in their publications and some startups.
Background Information:

State-of-the-arts in Antenna Engineering

Hype or Reality?

- Suppression of inter-element mutual coupling: **MIMO**?
- Low profile of antennas: **Cellular base-stations** ? ?
- Miniaturization of antennas (e.g. zero/negative-order resonator): **Portable devices** ? ?
- High gain for antennas with planar lens: **horns/patch**
- High gain of antennas with zero-index loading: **Vivadi@60GHz**
- Composite Right/Left-handed TL/LW antennas: **Beam-steering arrays** ?
- Zero-phase-shift-line loop antennas: **RFID**
- Controllable active metasurface arrays: **Satellite** ? ?

Notes: However, we have not had any chance to see metamaterials-based products in market so far although we have investigated on all antenna companies we can find out. We studied the metamaterials related patents and the description of the products which claimed that the designs are based on metamaterials.
Notes: The observation raises a critical question how many ideas published in scientific and even engineering journals have been successfully translated into engineering designs such as antennas which really enhance the performance of designs in conventional ways or/and invent new methods for engineering design. In the other words, we need the translation from the physical concepts to engineering designs. How to bridge this gap?
Rethinking: Antenna Engineering: **Case Study**

- Low profile of antennas: **Cellular Base-stations**

<table>
<thead>
<tr>
<th>Key Parameters</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Frequency, MHz</td>
<td>1710-2690 (~45%) (VSWR<1.6)</td>
</tr>
<tr>
<td>Size, wavelength@1710MHz</td>
<td>0.8x0.8x0.10</td>
</tr>
<tr>
<td>Gain, dBi with efficiency >90%</td>
<td>>7.0 at 1710 MHz; >11 at 2690 MHz</td>
</tr>
<tr>
<td>HP-Beamwidth</td>
<td>>55±5 degree</td>
</tr>
<tr>
<td>Polarization</td>
<td>dual-linear , ±45 degree</td>
</tr>
<tr>
<td>Isolation of polarization</td>
<td>>25 dB</td>
</tr>
<tr>
<td>Front-to-Back ratio</td>
<td>>22 dB</td>
</tr>
</tbody>
</table>

Any solutions???

No way for any conventional methods. Metamaterial-based solutions?
Rethinking

Metamaterial Publications

Metamaterial Antennas

Why and How?

? Inherent weakness of metamaterials (especially DNG) in terms of bandwidth, efficiency, size, etc.
(not due to DNG itself but existing approaches to realize DNG, using strong resonant structures)

? Too physical, enigmatic for engineers to understand/apply in design.
(good to describe physical phenomena using engineering languages such as RCL, S-parameters rather than index, even permittivity or permeability etc)

? A real magic
(ought to tell engineers real success stories of metamaterials in antenna design which have greatly enhanced performance, not potentials only.)
Rethinking

Definition of Metamaterials in Electromagnetics

“meta”: beyond

Metamaterials are artificial materials engineered to provide properties not readily available in nature.

These materials usually gain their properties from structures rather than composition, using the inclusion of small inhomogeneities to enact effective macroscopic behavior.

Notes: We may have to review the definition of Metamaterials and not limit us to DNG only. From the definition mentioned above, the three key words have been highlighted in red. In the other words, all EM structures can be considered as metamaterials if they have all three key features.
Translation from Physical Concepts to Engineering

Why ONLY Quadrant III?

Notes: Based on this thinking, we have a chance to explore the opportunities in other quadrants besides Quadrant III. For example, we can even look at Quadrant I for the structures which feature the magic properties that we have yet found in nature.

Rethinking
Work on All Quadrants!

zones of interest in Q I
a. $0 \leq \mu_r < 1$;
b. $0 \leq \varepsilon_r < 1$;
c. either μ_r or $\varepsilon_r \gg 1$;
d. both μ_r and $\varepsilon_r \gg 1$.

Notes: Let us work on structures in all Quadrants not only Quadrant III, As well as other structures featuring unique EM properties such as anisotropicity, chirality and so on.

Rethinking

Promising Translation from Physical Concepts to Engineering Technologies

Notes: The situation of metamaterials related R&D&C likes what is shown in the photo: the sun is rising to bring hopes to us although the beach and sea is still in dark due to the blockage of the mountains.

The photo was taken by Zhi Ning Chen in La Londe-les-Maures, Toulon, France in June 2013
Rethinking

Metamaterial-concept-based Antennas by Us

<table>
<thead>
<tr>
<th>meta</th>
<th>Double Negative Material ((\varepsilon<0 \ & \ \mu<0))</th>
<th>Artificial Complex Impedance Surface (Z_s = j\omega L/(1 - \omega^2 LC))</th>
</tr>
</thead>
<tbody>
<tr>
<td>feature</td>
<td>■Left-hand/Negative index of refraction-NIR</td>
<td>■EBG surface with pass/stop bands</td>
</tr>
<tr>
<td></td>
<td>■Zero-phase-shift lines</td>
<td>■Tunable impedance surface (TIS)</td>
</tr>
<tr>
<td>Applications</td>
<td>■Zero-phase-shift-line antennas</td>
<td>■High permittivity dielectric</td>
</tr>
<tr>
<td></td>
<td>■Electrically large near-field RFID antennas</td>
<td>■High impedance surface</td>
</tr>
<tr>
<td></td>
<td>■Omni-directional CP antennas</td>
<td>■Thin Fabry-Perot cavity antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■Broadband planar antenna</td>
</tr>
</tbody>
</table>

- **Zero-index antennas**
 - Gain-enhanced antipodal slot antennas
 - High-gain patch antenna

- **Composite right/left-handed leaky wave antennas**
 - Consistent-gain array
 - Broadband boresight radiation array
Rethinking:

Metamaterial-concept-based Antennas for Industry

- **Electrically Large**: Zero-phase-shift lines
 - UHF near-field RFID reader antennas
 - Omni-directional CP antennas

- **High-gain**: zero-index
 - Antipodal tapered slot antennas
 - Patch antennas

- **Low-profile**: High-permittivity/High Capacitive Surface/AMC
 - High-permittivity structure loaded broadband dipole array
 - High-capacity structure loaded broadband antenna
 - UHF near-field RFID AMC-loaded reader antennas
Zero-phase-shift-line-based Antennas: **Electrically Large**

UHF Near-field RFID Reader Antennas

Original solid loop

- λ/10
- λ/2
- λ
- 2λ

Zero-phase-shift unit

Patented @915 MHz

Zero-phase-shift-line-based Antennas: Electrically Large Near-field UHF RFID Reader Antennas

Maximum area up to 280×280 mm (500×500 mm)
Zero-phase-shift-line-based Antennas: Electrically Large Omni-directional Circularly Polarized Antennas

WLAN (2.4-2.5 GHz)

Patented
Zero-Index Antennas: High Gain

Antipodal Tapered Slot Antenna

@60-GHz

Proposed ZIM unit cell on a dielectric substrate.

Characteristics of the ZIM unit cell: (a) S-parameter data and (b) retrieved effective permittivity.

Field distribution of the antenna at 60 GHz (xy plane, $z = h/2$):
(a) without ZIM cells and (b) with ZIM cells.
Rethinking: Case study

High & Anisotropic Permittivity Structure Loaded Low profile Broadband MIMO Antenna

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameters</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Operating Frequency</td>
<td>1.71-2.65GHz (43%) for VSWR<1.5</td>
</tr>
<tr>
<td>2.</td>
<td>Antenna size: mm</td>
<td>200x300x38 (1.14λx1.71λx0.22λ @1.71GHz)</td>
</tr>
<tr>
<td>3.</td>
<td>Gain</td>
<td>>12dBi</td>
</tr>
<tr>
<td>4.</td>
<td>Cross-Polarization</td>
<td>>25dB in all direction</td>
</tr>
<tr>
<td>5.</td>
<td>Sidelobe Level</td>
<td>>15dB</td>
</tr>
<tr>
<td>6.</td>
<td>Backlobe Level</td>
<td>-25dB</td>
</tr>
<tr>
<td>7.</td>
<td>H-Plane Beamwidth</td>
<td>20°~25° (10dB)</td>
</tr>
</tbody>
</table>
Rethinking: Case study

High & Anisotropic Permittivity Structure Loaded
Low profile Broadband MIMO Antenna

high permittivity >30 and high reflective index >6

Permittivity is also anisotropic along x, y, z directions!
Rethinking: Case study

High & Anisotropic Permittivity Structure Loaded Low profile Broadband MIMO Antenna

Comparisons of impedance matching and gain for single dipole antenna (Air, high permittivity material, HAPS)
Rethinking: Case study

High & Anisotropic Permittivity Structure Loaded Low profile Broadband MIMO Antenna

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameters</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Operating Frequency</td>
<td>1.71-2.65GHz (43%) for VSWR<1.5</td>
</tr>
<tr>
<td>2.</td>
<td>Antenna size: mm</td>
<td>200x300x38 (1.14λ x 1.71λ x 0.22λ @ 1.71GHz)</td>
</tr>
<tr>
<td>3.</td>
<td>Gain</td>
<td>>12dBi</td>
</tr>
<tr>
<td>4.</td>
<td>Cross-Polarization</td>
<td>>25dB in all direction</td>
</tr>
<tr>
<td>5.</td>
<td>Sidelobe Level</td>
<td>>15dB</td>
</tr>
<tr>
<td>6.</td>
<td>Backlobe Level</td>
<td>-25dB</td>
</tr>
<tr>
<td>7.</td>
<td>H-Plane Beamwidth</td>
<td>20°~25° (10dB)</td>
</tr>
</tbody>
</table>

Patented
Rethinking: Case Study

High-capacity-loaded Low-profile Broadband WLAN Antenna

| Antenna | Impedance bandwidth (|S_{11}| < −10 dB) | Realized gain (dBi) | SLL (dB) | F/B (dB) |
|------------------------------|----------------------|---------------------|---------------|----------|
| mushroom antenna | 4.61-6.29 GHz, 30% | 8.1 ~ 11.0 | −6 ~ −11.2 | 7.5 ~ 14.6 |
| Patch array | 5.43-5.87 GHz, 8% | 10.3 ~ 11.2 | −12 ~ −12.3 | 12 ~ 12.3 |

Rethinking: Case Study

AMC-loaded Low-profile Near-Field RFID Antennas

Impinj Antenna

Cavity-backed dual-loop antenna

AMC-loaded cavity backed antenna

67 mm

55 mm

30 mm

Pending for patent
My Comments

- Fast development of wireless applications → strong increasing demand for high-performance antennas.

Metamaterial, as a concept, has opened a new window for innovative antenna design!

- Hot topics:
 - New methods to invent DNG structures for engineering
 - Translate the physical concepts to technology for applications
 - Miniaturization / compact
 - Broadband / multiband
 - Diversity / co-existence
 - Tunable / switchable
 - Super gain
 - Low cost / cost effective
Debate Session@iWAT2014: My Opinion

1. **metamaterial**: a concept not technology but possibility:
 - Everything possible (Q I, II & IV to Quadrant III)
 - Thinking out-of-the-box
 - Why limited to Quadrant III

2. **metamaterial**: possibility but aspirant
 - Medicine to solve all “headache” (existing technical challenges)??
 - Unique features for specific challenges

3. **metamaterial**: opportunity-suggestion
 • **Scientists**: exploring physical issues for crazy ideas
 • **Engineers**: understand and translate the ideas for tech

4. **My views**
 • **Scientists**: opportunity when things unclear/unknown
 • **Engineers**: opportunity when things clear/well-known

All questions, comments, and suggestions are welcome!

Merci! Thank you!
Terima kasih!
Nandri!
ありがとうございました
Danke!
감사합니다

Prof. Zhi Ning Chen
eleczn@nus.edu.sg