Intra-body Communication for In Vivo Wireless Nano-sensor Networks

From Micro to Nano: The Evolution of Healthcare

Raed Shubair

Abstract: The emerging intra-body communication (IBC) and networking system is a prospective component in advancing healthcare delivery and empowering the development of future medical monitoring systems. Using the human body as a transmission medium unfastened the research perspective towards Human Body Communication which has been introduced by the IEEE as a third physical layer. Generally, there are two approaches of HBC, namely, capacitive coupling and galvanic coupling. In this paper, the concept of galvanic coupling is adopted as a method for wireless transmission inside the human body. Then, the channel characteristics of the HBC based on the IEEE 802.15.6 standards are addressed where we focus on both the frequency response and the noise characterization. The results obtained are necessary for developing a realistic human body channel model capable of estimating the performances of wearable systems using HBC technology.

Keywords: Intra-body communication (IBC), human body communication (HBC), channel characterization, WBAN.

References:

Raed Shubair is Full Professor in the Electrical and Computer Engineering Department, Khalifa University, UAE, Visiting Scientist at the Research Laboratory of Electronics (RLE) and Department of Electrical Engineering and Computer Science (EECS) of Massachusetts Institute of Technology (MIT), USA, and Research Affiliate of Center of Intelligent Antennas and Radio Systems, University of Waterloo, Canada. He received both B.Sc. and Ph.D. degrees in Electrical Engineering from Kuwait University, Kuwait in June 1989 and University of Waterloo, Canada in Feb 1993, respectively. His PhD thesis received the University of Waterloo Distinguished Doctorate Dissertation Award in 1993. His current research interests include advanced techniques and technologies for communications, signal processing, electromagnetics, antennas, and biomedical applications. He is recipient of several awards including Teaching Excellence Award, Khalifa University (2008); Distinguished Service Award, ACES Society (2005); Distinguished Service Award, Electromagnetics Academy (2007); Distinguished Service Award, Khalifa University (2010); IEEE IIT conference Selected Best Papers Award (2015); IEEE ICCSPA Best Paper Award (2015). Prof. Shubair conducted several tutorials and workshops in international conferences, and has been on the editorial boards of several international journals. He is the Chair of IEEE AP-S Educational Initiatives Committee and Outreach Chair for IEEE Region 8 Europe, Africa, and Middle East.

*This use of this work is restricted solely for academic purposes. The author of this work owns the copyright and no reproduction in any form is permitted without written permission by the author. *
Intra-body Communication for In Vivo Wireless Nanosensor Networks

From Micro to Nano: The Evolution of Healthcare

Raed Shubair
Nanotechnology: Big Things from a Tiny World!
Cancer Therapy Through Nanomedicine

The National Cancer Institute’s plan to defeat cancer through engineered design.

GEORGE W. HINKAL, DOROTHY FARRELL, SARA S. HOOK, NICHOLAS J. PIANNO, KRZYSZTOF PTAK, AND PIOTR GRODZINSKI

NANOMEDICINE:

THE FUTURE OF MEDICINE

Nanomedicine, refers to highly specific medical intervention at the molecular level for curing disease or repairing damaged tissues. Though in its infancy, could we be looking at the future of medicine? Early clinical trials certainly look promising.
• Sensors of a micro-scaled WBAN:
 - Unable to provide absolute invasive medical care (*inconvenient as it requires piercing and penetration of the patient’s body*).
 - Fail to provide cellular-level precision in measurement and actuation.

• The advancements in nanotechnology provided a solution to the limitations of the microscale WBAN-based health care.
 - Nanotechnology enables fabrication of devices in the scale of 1 to 100 nm.
 - These nanodevices are envisioned as a tiny arranged set of molecules able to perform small and simple sensing, actuation, and computation tasks.
 - As proposed by Akyildiz et al., a nanosensor node consists of multiple nanocomponents, each designed to perform a particular task.
• Network Topology

- Nanocomponents form a wireless nanobiosensor network

- Sensors communicate via nanoscale data-acquisition module

- Communications among the nanosensor nodes do not follow the existing wireless communication protocols

- The difference between a traditional sensor network and a nanobiosensor network is the:

 Modes and Medium of Communication
Application Areas of Wireless Nano-Biosensor Networks

Health Monitoring

- Measure pH at two different places within a single cell.
- Measure oxygen and cholesterol levels
- Identify of cancerous cells
- Diagnose hormonal disorders

Drug Delivery

- Smart nanoactuators deliver drugs invasively without external interference.

Examples
- Smart insulin nanoactuators can constantly monitor the blood sugar level and inject precalculated amounts of insulin.
- Cellular-level chemotherapy
Application Areas of Wireless Nano-Biosensor Networks

Immunity Support

• Identify the presence of foreign bodies and pathogens within the human body.

• Capable of responding against the malicious cells, resulting in disease treatment that is localized, less aggressive, and less invasive.

Medical Imaging

• Diagnostic and stem cell imaging

Other Applications

• Deep brain nano-stimulators
Three Main Research Areas
(From an Engineering Point of View)

1) Intra-body Channel Characterization
 (Area of Interest)
 Establish efficient communication links between intra-body bionanosensors

2) Energy Harvesting
 Minimize the nanonetwork energy consumption through energy harvesting bionanosensors

3) Security Issues
 Establish secure links among intrabody bionanosensors
Establish Efficient Communication Links Between Nanonetworks

Graphene-based nano-antennas and nano-tranceivers

Design Fabrication Modeling

Nano Engineering

Communication Engineering

Biomedical Engineering

Propagation Modeling
Capacity Analysis
Modulation
Error Control

Biocompatibility
Human Body Model
Specific Absorption Ratio
• The Electromagnetic Spectrum

Band # 1 : HBC Via Galvanic Coupling

Band # 2 : THz Intra-Body Communication
Presentation Outline

• Human Body Communication
 - Capacitive Coupling
 - **Galvanic Coupling**

• In Vivo THz Intra-body Communication

• Conclusions and Future Directions
Intra-Body Communication:

Human Body Communication Via Galvanic Coupling

- HBC is a novel data transmission technique using the human body itself as the transmission medium or channel.
- HBC has been introduced by the IEEE as a third physical layer.
- This method is set to eliminate both bulky cable and wireless antenna from medical monitoring communication devices.
- The inhibition of communication to the person’s proximity in IBC users prevents the energy from being dissipated into the surrounding environment.
- Compared to RF wireless techniques, HBC potentially provides lower transmission power (less than 1.0 mW) with data rates of more than 100 kbps.
- The operating frequency band of HBC is centered at 21 MHz with channel frequency bandwidth of 5.25 MHz and scalable data rates of 164-1312.5 kbps.
Intra-Body Communication

- IBC can be classified into two basic coupling types (i.e. how the electrical signals are transmitted):
 - Capacitive coupling (Near-electric field)
 - Galvanic coupling (Waveguide)

Capacitive Coupling

- Capacitive coupled IBC is based on the capacitive coupling of the human body to its surrounding environment.
- The signal is generated between the body channel transceiver by making a current loop through the external ground.
- The signal electrode of the transmitter induces the electric field into the human body.
- The induced electrical signal is controlled by an electrical potential and the body acts as a conductor with the ground as the return path.
Intra-Body Communication

Galvanic Coupling

- Galvanic coupling is achieved by coupling alternating current into the human body.
- It is controlled by an AC current flow and the body is considered as a transmission line (waveguide).
- An electrical signal is applied differentially between the two electrodes of the transmitter.
- Major propagation of the signal occurs between the two transmitter electrodes and a largely attenuated signal is received by the two receiver electrodes.
- The small current results in a differential signal between the electrodes.
- In general, the ion content in the human body is the carrier of information in the galvanic coupling method.
The setup to achieve galvanic coupling involves:

- Injecting an alternating current in the coupler between the two electrodes.
- The detector unit senses the transmitted signal through another two electrodes.
- The attenuation factor changes according to the dissimilar human body tissues which exhibit different electrical properties.
Paper Contribution:
Human Body Channel Characterization

Noise characteristics:
The noise level which is received from outside noise source by EM field coupling.

Frequency response:
The change of amplitude and phase by human body.
To study the human body as a communication channel:

- A voltage signal is induced through a pair of electrodes.
- A 2x2 cm3 electrode pair located at the fingertips of each hand is used.
- The transmission distance between the transmitter and receiver is 150 cm.
- Because the human body is a lossy dielectric medium, an attenuated voltage will be induced on the receiver load.
- The voltage signal experiences a change in its amplitude and phase due to the capacitive loss associated with the components of the human body.
- The frequency response in the range 5 MHz-50 MHz.
Simulation Results: Frequency Response

The amplitude of the received signal decays with increased frequency indicating increased attenuation effects.

It can be concluded that the received signal strength (RSS) attenuates to the nano-volt or even pico-volt range, making reception very difficult.

The propagation speed reduces as the electromagnetic (EM) wave passes through an inhomogeneous medium.

This results in time dispersion, that differs with each organ and body tissue.
The users of HBC are vulnerable to EM radiation from several electronic devices during data transmission.

This radiation results in noisy data reception.

The noise characteristics vary according to site and time, which imposes the need for a statistical prediction exact.

Results demonstrate that the measured noise can be approximated as a Gaussian distribution with zero mean and variance of 2.55×10^{-5}.
Presentation Outline

• Human Body Communication
 - Capacitive Coupling
 - Galvanic Coupling

• *In Vivo THz Intra-body Communication*

• Conclusions and Future Directions
Why THz?

- Higher Frequencies
 - Shorter Wavelengths
 - Capture Molecular Interactions
 - Nanoscale Level
 - Nanotechnology Enables the Development of Novel Nanosensors
Facts about the THz Band

- Terahertz Band (0.1-10 THz) communication is envisioned as a key technology to satisfy the increasing demand for higher speed wireless communication.
- However, the THz spectrum, known as the THz gap, has not been fully exploited and explored.
- The THz technology is a fast growing field with applications in biology and medicine.
- The non-ionizing nature of the THz makes it appealing for health applications.
Molecular Communication
- Based on the exchange of molecules to transmit information.
- Used by cells to exchange information and coordinate their actions.

Ultrasonic Communication
- Utilization of high frequency acoustic waves.
- Yet, the size and power limitations of ultrasonic transducers pose a challenge on their integration with biological nano-sensors.
Adopted Communication: Electromagnetic Wireless Nanosensor Networks

- Evolution of Concept

 • From the EM perspective, miniaturization of conventional metallic antenna results in high resonant frequencies. f_0 is approximately 150 THz (10^{12} Hz).

 • Therefore, the feasibility of electromagnetic (EM) communication in nanonetworks would be compromised due to:

 Limitation 1
 High propagation Loss: $A \propto f^2$

 \[
 \frac{A(150 \text{ THz})}{A(2.4 \text{ GHz})} = 3.9 \times 10^9 \sim 100 \text{ dB}
 \]

 Limitation 2
 Low transmission power of nano-machines

 \[
 P_{\text{max}} = \frac{E_{\text{cap}}}{\Delta t}
 \]

 Limitation 3
 Lack of nano-transceivers able to operate at these frequencies
- **Evolution of Concept**

 - Although at such frequencies metals do not behave as PEC, they exhibit complex conductivity.
 - This enables the propagation of confined EM modes at the surface of the antenna. (Surface Plasmon Polariton Waves)
 - This led to the development of:

Novel Plasmonic Nanoantenna

Graphene-based Plasmonic Nanoantenna
The properties of the THz band open a new era and interest because of its non-ionization hazards for biological tissues.

The feasibility of using THz to communicate has already been validated [1].

However, *in-vivo* communication at THz has not been studied for a tissue model.

Motivation for current research: Is it possible for THz waves to propagate *in vivo*?

In Vivo Nano-Communication in WBANs

- **A channel model** provides an analytical description of such effects and gives a way to compute the
 - Attenuation (Path Loss) **due to the transmission of waves**
 - Noise Model
 - Channel Capacity
- Channel models for lower frequency ranges (MHz, GHz) cannot be used in the THz Band.
 - Do not capture the impact of molecular absorption.

![Diagram of wave propagation through molecules](image-url)
In Vivo Nano-Communication in WBANs

- This work studies in-vivo communication at THz frequency for a biological tissue model constituting of bone, muscle, fat, and skin.
- The optical parameters of human tissues up to 1.5 THz are demonstrated in [2].
- The path loss is calculated and the possibility of THz waves to propagate in-vivo for different materials is checked.

1) Path Loss Model

\[PL[dB] = PL_{\text{spread}} + PL_{\text{absorption}} \]

\[PL_{\text{spread}} = -10 \log_{10} \left(\frac{\lambda_g}{4\pi d} \right)^2 \]

\[\lambda_g = \frac{\lambda_0}{n} \]

- The refractive index \(n \)

\[n = \sqrt{\frac{\sqrt{\varepsilon'^2 + \varepsilon''^2} + \varepsilon''^2}{2}} \]

- Permittivity

\[\varepsilon = \varepsilon' - j\varepsilon'' \]

- The extinction coefficient \(K \)

\[K = \sqrt{\frac{\sqrt{\varepsilon'^2 + \varepsilon''^2} - \varepsilon''^2}{2}} \]

\[\alpha = \frac{4\pi K}{\lambda_0} \]

<table>
<thead>
<tr>
<th>Tissue</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>1.69</td>
</tr>
<tr>
<td>Bone</td>
<td>2.49</td>
</tr>
<tr>
<td>Fat</td>
<td>1.58</td>
</tr>
<tr>
<td>Muscle</td>
<td>1.79</td>
</tr>
</tbody>
</table>
The path loss between 0.5 and 1.5 THz at a distance of 1mm is around 40 dB.
At 1 THz, the path loss between 1 mm and 1.5 mm ranges between 36 dB and 40 dB, for the different body parts.
1) Path Loss Model

- Path Loss Model presented is “Basic”
- It lacks the incorporation of theories of:
 - Diffractions
 - Reflection
 - Scattering
 - NLOS Propagation Model
2) Molecular Absorption Noise Temperature

• Emissivity of the channel
 \[\varepsilon(f, d) = 1 - \tau(f, d) = 1 - e^{-\alpha(f)d} \]
 \(\tau \) : Transmittance of the medium

• Noise Temperature due to molecular absorption
 \[T_{mol}(f, d) = T_0 \varepsilon(f, d) \]

• Total System Noise Power
 \[T_{noise} = T_{sys} + T_{ant} = T_{sys} + T_{mol} + T_{other} \]

 \(T_{sys} \) = system electronic noise temperature
 \(T_{ant} \) = total antenna noise temperature
 \(T_{mol} \) = molecular absorption noise
 \(T_{other} \) = additional noise sources

• Equivalent noise power at the receiver
 \[P_n(f, d) = \int_B N(f, d) \, df = k_B \int_B T_{noise}(f, d) \, df \]
At the level of millimeters, the molecular noise temperature isn’t tremendously high (approximately 310 K).
Simulation Results

Molecular noise temperature in Fat