Unstructured-grid and conservative particle-in-cell algorithm: Application to micromachined beam-plasma slow-wave structures

D. Y. Na¹, Y. A. Omelchenko² and F. L. Teixeira¹
¹ElectroScience Laboratory, The Ohio State University, Columbus Ohio USA
²Trinum Research, San Diego, California, USA

Abstract: We present an accurate and efficient electromagnetic particle-in-cell (EMPIC) algorithm on unstructured grids for the analysis and design of axisymmetric slow-wave structures. The use of unstructured grids allows for more fidelity in the modeling of micromachined geometries. The use of a reduced dimensionality algorithm decreases the computational costs significantly and enables its integration as a forward engine into a design loop. Special gather and scatter steps are employed to yield accurate beam plasma dynamics and exact charge conservation on unstructured grids. We provide numerical examples involving travelling-wave tube amplifiers designed to harness bunching effects arisen from Cherenkov radiation from plasma electron beams.

Keywords: Maxwell-Vlasov equations, particle-in-cell, plasma, vacuum electronics devices.

References:

This use of this work is restricted solely for academic purposes. The author of this work owns the copyright and no reproduction in any form is permitted without written permission by the author.
Unstructured-Grid and Conservative Particle-in-Cell Algorithm: Application to Micromachined Beam-Plasma Slow-Wave Structures

Dong-Yeop Na¹, Yuri A. Omelchenko², and Fernando L. Teixeira¹

¹ElectroScience Laboratory, The Ohio State University, Columbus, OH
²Trinum Research Inc. San Diego, CA
Introduction

Particle-In-Cell (PIC) algorithm for plasma simulations: Field solver, gather, relativistic particle pusher, and scatter

Modeling of beam-field interactions in vacuum electronics devices (VED)

Numerical Examples (TWT amplifier and BWO)

Concluding Remarks
Electromagnetic Particle-in-Cell (EM-PIC) Algorithms

- **Vlasov equation**
 - \(\frac{df_p(r(t), \dot{r}(t), t)}{dt} = 0 \) (collisionless)
 - \(\frac{\partial f_p}{\partial t} + \dot{v} \cdot \nabla r f_p + \frac{q_p}{m_p} [E + \dot{v} \times B] \cdot \nabla v f_p = 0 \)
 - Shape factor \(f_p \) represents spatial distribution for an ensemble of particles (number density of particles), described by a smaller set of “super-particles” (coarse graining of the phase-space).

- **Electromagnetic particle-in-cell (EM-PIC) algorithm**
 - Numerical approach to solve the MV system
 - Four major steps at each time-update

- **Applications based on EM-PIC simulations**
 - Plasma physics and astrophysics
 - Vacuum electron devices (VED)
Vacuum Electronics Devices (VED)
- VED are essential for high-power microwave (HPM) sources in variety of applications including pulsed radar systems, RF amplification, and others.
- Slow-wave structures (SWS) are often used to slow down the phase velocity of waves and excite Cerenkov radiation.
- Most VEDs are cylindrically axisymmetric (invariant along ϕ).

Micromachined Slow-Wave Structures (SWS)
- Micromachining desirable for high performance operation at microwaves and, especially, terahertz frequencies.
- Either structured grids with conformal capabilities or unstructured grids (general solution) should be used to correctly capture the geometry of micromachined SWSs.

Main contribution of this work
- We introduce a EM-PIC algorithm for circularly symmetric VED which is (1) based on unstructured grids and (2) attains charge conservation from first principles.
3D cylindrical axisymmetry VED

- (1) Problem geometry, (2) EM fields, and (3) sources are cylindrically axisymmetric ($\frac{\partial}{\partial \phi} = 0$).

1. Reduction of the exterior derivative $d : d = \frac{\partial}{\partial \rho} d\rho + \frac{\partial}{\partial z} dz$

Two useful constraints to reduce the dimensionality of 3D cylindrically axisymmetric problems

1. Reduction of the exterior derivative $d : d = \frac{\partial}{\partial \rho} d\rho + \frac{\partial}{\partial z} dz$
2. Consideration of only TM eigenmodes with $m = 0$ (m is an index for azimuthal modes)
Differential forms expressions for dynamic variables with a non orthonormal basis set of \((d\rho, d\phi, dz)\)

- \(\mathcal{E} = E_\rho \, d\rho + E_z \, dz\)
- \(\mathcal{B} = B_\phi \, dz \wedge d\rho\)
- \(\mathcal{H} = H_\phi \, d\phi\)
- \(\mathcal{D} = D_\rho \, d\phi \wedge dz + D_z \, d\rho \wedge d\phi\)
- \(J_* = J_{*\rho} \, d\rho + J_{*z} \, dz\)
- \(Q_* = \rho_{v*}\)
- \(\mathcal{J} = J_\rho \, d\phi \wedge dz + J_z \, d\rho \wedge d\phi\)
- \(\mathcal{Q} = \rho_v \, d\rho \wedge d\phi \wedge dz\)

Hodge star operator for fields and sources

\[
\mathcal{H} = \star \mu^{-1} \mathcal{B} \\
LHS = H_\phi \, d\phi \\
RHS = \star \mu^{-1} \left(B_\phi \, dz \wedge d\rho \right) \\
= \mu_0^{-1} B_\phi \star (dz \wedge d\rho) = \mu^{-1}(\rho) B_\phi \, d\phi
\]

\[
\mathcal{D} = \star \mathcal{E} \\
LHS = D_\rho \, d\phi \wedge dz + D_z \, d\rho \wedge d\phi \\
RHS = \star \epsilon \left(E_\rho \, d\rho + E_z \, dz \right) = \\
= \epsilon \left[E_\rho (\rho d\phi \wedge dz) + E_z (d\rho \wedge \rho d\phi) \right] \\
= \epsilon(\rho) \left(E_\rho \, d\phi \wedge dz + E_z \, d\rho \wedge d\phi \right)
\]

- We introduce an (1) artificial inhomogeneous medium with dependency on \(\rho\) and (2) rescaled sources.

3D axisymmetric problems w.r.t. geometry, fields, and sources can be modeled by 2D equivalent problems by TE^ϕ-polarized fields, artificial inhomogeneous medium, and scaled sources.

- The continuous ring of particles along ϕ-axis matches a particle at the meridian plane.
Mixed $\mathcal{E} - \mathcal{B}$ FETD Scheme for (2+1) Theory

\[
d\mathcal{E} = -\frac{\partial \mathcal{B}}{\partial t}, \quad d\mathcal{H} = \frac{\partial \mathcal{D}}{\partial t} + J, \quad d\mathcal{D} = Q, \quad d\mathcal{B} = 0
\]

Spatial discretization by expanding variables as

In primal mesh
- $\mathcal{E} = \sum_{i=1}^{N_1} \mathbb{E}_i^n \Psi_i^n$ (1-form)
- $\mathcal{B} = \sum_{i=1}^{N_2} \mathbb{B}_i^{n \frac{1}{2}} \Psi_i^n$ (2-form)
- $J_* = \sum_{i=1}^{N_1} \mathcal{J}_i^n \Psi_i^n$ (1-form)
- $Q_* = \sum_{i=1}^{N_0} \mathcal{Q}_i^n \Psi_i^n$ (0-form)

In dual mesh
- $\mathcal{H} = \sum_{i=1}^{N_0} \mathbb{H}_i^{n \frac{1}{2}} \tilde{\Psi}_i^0$ (0-form)
- $\mathcal{D} = \sum_{i=1}^{N_1} \mathcal{D}_i^n \tilde{\Psi}_i^1$ (1-form)
- $J = \sum_{i=1}^{N_1} \mathcal{J}_i^n \tilde{\Psi}_i^1$ (1-form)
- $Q = \sum_{i=1}^{N_2} \mathcal{Q}_i^n \tilde{\Psi}_i^0$ (0-form)

Paring, generalized Stokes Theorem, and leapfrog time scheme

Mixed $\mathcal{E} - \mathcal{B}$ FETD Scheme: Kim and Teixeira, IEEE T-AP, vol. 59, p. 2350 (2011)

\[
[\mathcal{B}]^{n + \frac{1}{2}} = [\mathcal{B}]^{n - \frac{1}{2}} + \Delta t [\mathcal{D}_{\text{curl}}] \cdot [\mathcal{E}]^n
\]

\[
[\mathcal{B}] \cdot [\mathcal{E}]^{n + 1} = [\mathcal{B}] \cdot [\mathcal{E}]^n + \Delta t \left([\mathcal{D}_{\text{curl}}] \cdot [\mathcal{B}]^{n + \frac{1}{2}} - [I] \cdot [J_*]^{n + \frac{1}{2}} \right)
\]

Mixed Hodge matrices

\[
[\star_{\epsilon}]_{ij} = \int_K \epsilon(\rho) \omega_i^1 \wedge \star \omega_j^1
\]

\[
[\star_{\mu^{-1}}]_{ij} = \int_{\tilde{K}} \mu^{-1}(\rho) \omega_i^2 \wedge \star \omega_j^2
\]
Gather

- EM field values are interpolated at the instant positions of particles by using interpolants of Whitney forms
 \[
 \vec{E}_p^n = \sum_{i=1}^{N_1} \vec{E}_i^n \overrightarrow{W}_i^1 (\vec{r}_p^n)
 \]
 \[
 \vec{B}_p^n = \frac{\vec{B}_p^{n+\frac{1}{2}} + \vec{B}_p^{n-\frac{1}{2}}}{2} = \sum_{i=1}^{N_2} \left(\frac{\vec{E}_i^{n+\frac{1}{2}} + \vec{E}_i^{n-\frac{1}{2}}}{2} \right) \overrightarrow{W}_i^2 (\vec{r}_p^n)
 \]

- Relativistic particle pusher
 - Lorentz force and Newton’s law of motion
 - Updates of particles’ position and velocity
 - Relativistic factor, \(\gamma = \frac{1}{\sqrt{1 - (\frac{v_p}{c})^2}} \)
 - Boris or Vay algorithms
 - Beam focusing system (BFS)
BFS prevents particles to radially deviate from electron beams due to the repulsive forces

- It computes effects by self-fields and BFS and neglects ϕ motions due to continuous rings of particles.
Exact Charge-Conserving Scatter

Discrete continuity equation

\[
\frac{[I] \cdot [Q_*]^{n+1} - [I] \cdot [Q_*]^{n}}{\Delta t} = -[\mathcal{D}_{\text{div}}] \cdot [I] \cdot [J_*]^{n+\frac{1}{2}}
\]

Rate of charge variation at \(n_1 \)

\[
\frac{Q_{*,n_1}^{n+1} - Q_{*,n_1}^n}{\Delta t} = \frac{q}{\Delta t} \left(\frac{\rho_f + \rho_2 + \rho_3 \lambda_1^f}{3} - \rho_s + \frac{\rho_2 + \rho_3 \lambda_1^s}{3} \right) = -\frac{q}{\Delta t} \left[\rho_f \lambda_1^f - \rho_s \lambda_1^s + (\rho_2 + \rho_3)(\lambda_1^f - \lambda_1^s) \right]
\]

Net currents flowing outward from \(n_1 \)

\[
\mathbb{J}_{*,e_i}^{n+\frac{1}{2}} = \frac{q}{\Delta t} \left(\rho_f \lambda_1^f - \rho_s \lambda_1^s + (\rho_2 + \rho_3)(\lambda_1^f - \lambda_1^s) \right)
\]

discrete charge

\[Q_{*,n_i} \equiv q(x, \rho w_{n_i}^0)\]

discrete current

\[\mathbb{J}_{*,e_i} \equiv \frac{q}{\Delta t} (l, \rho w_{e_i}^1)\]
Example 1: Vacuum Diode

- Proposed charge-conserving (CC) scheme vs. conventional non charge-conserving (NCC) scheme

Cathode Anode

CC & SPAI $k = 2$

CC & LU dcmp.

NCC & LU dcmp.

Particle dist.

Self-fields

electron beam

non-physical bunching

spurious fields

Example 1: Vacuum Diode
- Electron beam, input RF signal, SWS
- Sinusoidal Corrugated Circular Waveguide (SCCW)
 \[R_0 = 0.04, \epsilon_R = 0.025, p_c = 0.02 \]
- Electron bunching due to forward Cerenkov radiation
- Confinement of the electron beam by BFS

Example 2: Traveling Wave Tube (TWT) Amp.

Dispersion relations for SCCW

Distribution of the electron beam
Residual analysis for discrete Gauss law (DGL)

\[
\text{DGL} : [\mathcal{D}_\text{div}] \cdot [\star \epsilon] \cdot [\mathcal{E}]^n = [Q_\star]^n
\]

The residuals for DGL at any two successive time-steps remain the same, in other words, if initial conditions have

\[[\mathcal{D}_\text{div}] \cdot [\star \epsilon] \cdot [\mathcal{E}]^0 = [Q_\star]^0, \]

DGL for all time-steps is verified.

Premultiplying \([\mathcal{D}_\text{div}] \cdot [\star \epsilon]\) into DAL, using \([\mathcal{D}_\text{div}] \cdot [\mathcal{D}_\text{curl}] = 0\), and rearranging the equation yield

\[
[\mathcal{D}_\text{div}] \cdot [\star \epsilon] \cdot \left(\frac{[\mathcal{E}]^{n+1} - [\mathcal{E}]^n}{\Delta t} \right) = -[\mathcal{D}_\text{div}] \cdot \left(\mathcal{J}_\star \right)^{n+\frac{1}{2}}.
\]

Substituting DCE into above equation and rearranging it give

\[
[\mathcal{D}_\text{div}] \cdot [\star \epsilon] \cdot [\mathcal{E}]^{n+1} - [Q_\star]^{n+1} = [\mathcal{D}_\text{div}] \cdot [\star \epsilon] \cdot [\mathcal{E}]^n - [Q_\star]^n.
\]

By induction,

\[
[\mathcal{D}_\text{div}] \cdot [\star \epsilon] \cdot [\mathcal{E}]^n - [Q_\star]^n = [\mathcal{D}_\text{div}] \cdot [\star \epsilon] \cdot [\mathcal{E}]^0 - [Q_\star]^0
\]

\[|NR_{\text{DGL}}^n| = 1 - \frac{[Q_\star]^n + 1}{\sum_{j=1}^{N_0} [\mathcal{D}_\text{div}]_{i,j} \left(\sum_{k=1}^{N_1} [\star \epsilon]_{j,k} [\mathcal{E}]_{k}^{n} \right)} \]

Normalized residuals for DGL

\[|NR_{\text{DGL}}^i| = 1 - \frac{[Q_\star]_{i}^{n+1}}{\sum_{j=1}^{N_0} [\mathcal{D}_\text{div}]_{i,j} \left(\sum_{k=1}^{N_1} [\star \epsilon]_{j,k} [\mathcal{E}]_{k}^{n} \right)} \]

Example 2: Traveling Wave Tube (TWT) Amp. (cont')
Example 3: Backward Wave Oscillator (BWO)

- Small perturbation by the electron beam generates RF signals in the positive feedback system (BWO).
- Rectangular corrugated cylindrical waveguide: \(R_{in} = 0.04 \text{ [m]}, R_{out} = 0.045 \text{ [m]}, p_c = 0.045 \text{ [m]} \)

- \(V_a = 500 \text{ [kV]} \) yields relativistic electron beams with \(v_p = 0.83c \).
- Electron bunching due to backward Cerenkov radiation
New electromagnetic particle-in-cell (EM-PIC) algorithm developed to solve Maxwell-Vlasov system on unstructured grids.

Exterior calculus of differential forms1 was used to derive an exact charge-conserving gather and scatter schemes on unstructured grids2.

SPAI algorithm was used to accelerate the field update3.

Relativistic particle pusher has been implemented by using Boris algorithm.

Successfully applied to simulate plasma-beam dynamics in axisymmetric VED devices, including travelling wave tube (TWT) amplifiers and backward wave oscillators (BWO).

1F. L. Teixeira, \textit{PIER} 148, 113-128 (2014).

Thank You!

Q&A

This work has been supported by NSF ECCS-1305838, OSC PAS-0661 and PAS-0110, and by the OSU Presidential Fellowship program.