Graphene Magnetoplasmonic Principles, Structures and Devices

Nima Chamanara and Christophe Caloz
Poly-Grames Research Center, Montreal, QC, Canada

Abstract:
This paper recalls fundamentals of magnetoplasmons in magnetically biased graphene structures, describes their non-reciprocity and demonstrates their utilization as devices such as isolators and couplers. A multi-scale multi-physics structure, using a magnetic nanowire membrane as integrable magnetic bias, with applications to Faraday rotators and integrable nonreciprocal plasmonic components, is presented.

Keywords: graphene, plasmonics, magnetoplasmon, nonreciprocity, isolator, coupler.

References:

This use of this work is restricted solely for academic purposes. The author of this work owns the copyright and no reproduction in any form is permitted without written permission by the author.
Graphene Magnetoplasmonic Principles, Structures and Devices

Nima Chamanara* and Christophe Caloz*†

* École Polytechnique de Montréal, Canada
† King Abdulaziz University, Jeddah, Saudi Arabia
I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIPROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIPROCAL PHASE SHIFTER
 II. NON-RECIROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
I. INTRODUCTION TO GRAPHENE MAGNETOPLASMOMS

II. PRINCIPLES OF NON-RECIPROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIPROCAL PHASE SHIFTER
 II. NON-RECIPROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
Surface Plasmons - Introduction

C. Neto et al., Rev. Mod. Phys. 81, 109 –January 2009

dielectric

metal

metal-dielectric interface

2D electron gas (2DEG)

dielectric

metal

dielectric

graphene:

- one atom thick material
- gapless energy band
- 2D electron system with high mobility
- tunability and ambipolarity
$B_0 = 0$
$\Im(\sigma) < 0 \implies \text{longitudinal (TM}_z\text{)}$

$\Im(\sigma) > 0 \implies \text{transverse (TE}_z\text{)}$

$B_0 > 0$
$\implies \text{hybrid mode}$
Plasmons in a Graphene Strip

- graphene strip without magnetic bias
- 2D eigenvalue problem
- finite difference frequency domain (FDFD)
- graphene: zero thickness conductive strip
- Kubo conductivity tensor
- infinite number of 2D bulk modes
- 2 degenerate edge modes

\[B_0 = 0 \]

\[n_s = 10^{13} \text{ cm}^{-2} \]
\[\tau = 0.1 \text{ ps} \]
\[w = 100 \text{ μm} \]
Outline

I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIROCAL PHASE SHIFTER
 II. NON-RECIROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
Splitting of the Edge Modes with a Magnetic Bias

\[\sigma = \sigma_d - j\sigma_o \]

\[\bar{\sigma} = \sigma_d(\hat{x}\hat{x} + \hat{z}\hat{z}) + \sigma_o(\hat{x}\hat{z} - \hat{z}\hat{x}) \]

Magnetically Biased Graphene Strip

Edge modes
- split in a magnetic field
- exhibit non-reciprocal properties

\[n_s = 10^{13} \text{ cm}^{-2} \]
\[\tau = 0.1 \text{ ps} \]
\[w = 100 \mu\text{m} \]
\[B = 1 \text{ T} \]
Outline

I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIPROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIPROCAL PHASE SHIFTER
 II. NON-RECIPROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
Nonreciprocal Plasmonic Phase Shifter

Edge modes
- unsymmetric dispersions for opposite directions
- \Rightarrow different phase shifts

![Diagram of nonreciprocal plasmonic phase shifter with edge modes labeled and graphs showing frequency vs. phase difference and frequency vs. attenuation for different sheet densities.](image-url)
I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIPROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIPROCAL PHASE SHIFTER
 II. NON-RECIPROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
Nonreciprocal Magnetoplasmon Coupler

left strip:
\[n_s = 8 \times 10^{12} \text{ cm}^{-2} \]
\[\tau = 0.1 \text{ ps} \]
\[w = 100 \mu\text{m} \]
\[B = 1 \text{T} \]

right strip:
\[n_s = 10^{13} \text{ cm}^{-2} \]
\[\tau = 0.1 \text{ ps} \]
\[w = 100 \mu\text{m} \]
\[B = 1 \text{T} \]
Nonreciprocal Magnetoplasmon Coupler
I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIROCAL PHASE SHIFTER
 II. NON-RECIROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS (CHEMICAL DOPING)
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
Graphene Plasmonic Isolator

no magnetic bias:
- symmetric dispersion for opposite directions
P-N Junction Mode Forward Vs. Backward

\[\sigma = \sigma_d + j\sigma_{on} \quad \text{forward} \quad \sigma = \sigma_d - j\sigma_{op} \]

\[\sigma = \sigma_d - j\sigma_{on} \quad \text{backward} \quad \sigma = \sigma_d + j\sigma_{op} \]

- **n-doped**: \(\bar{\sigma} = \sigma_d(\hat{x}\hat{x} + \hat{z}\hat{z}) + \sigma_o(\hat{x}\hat{z} - \hat{z}\hat{x}) \)
- **p-doped**: \(\bar{\sigma} = \sigma_d(\hat{x}\hat{x} + \hat{z}\hat{z}) - \sigma_o(\hat{x}\hat{z} - \hat{z}\hat{x}) \)
with magnetic bias:
- unsymmetric dispersion for opposite directions
- mode 3 is localized at the p-n junction only
 in the forward direction
I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIPROCAL PHASE SHIFTER
 II. NON-RECIPROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS (ELECTRICAL DOPING)
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
Electrically Doped Graphene PN Junction

\[\int_{-w/2}^{w/2} \rho(x', y') G(x, y; x', y') dx' - E_0 x = 0, \]
\[-w/2 \leq x \leq w/2, \quad y = 0, \quad y' = 0, \]
\[G(x, y; x', y') = \frac{-1}{2\pi \epsilon_0} \ln \sqrt{(x' - x)^2 + (y' - y)^2} \]

2D Green function for Poisson equation

\[w = 50 \mu m \]
\[E_0 = 10^8 \text{ V/m} \]
Electrically Doped Plasmonic ISolator

$B \uparrow \Rightarrow$ the localized p-n junction mode propagates only in the forward direction

$w = 50 \, \mu m$
$E_0 = 10^8 \, V/m$
$B = 0.1 \, T$
Outline

I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIPROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIPROCAL PHASE SHIFTER
 II. NON-RECIPROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS (GRAPHENE ON FERRITE SUBSTRATE)
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
TM (conventional) Surface Plasmons

Electric field

LHCP

RHCP

charges
Graphene TE Surface Plasmons

- LHCP
- RHCP
- Magnetic field
- Transverse currents
TE Plasmons Interaction with Ferrite Substrate

LHCP Forward
RHCP backward

Static magnetic field

Ferrite

magnetic field
Analysis 1

Electric fields
\[E_1 = \left(E_{x1}, E_{y1}, E_{z1} \right) e^{-\alpha_1 y - ikz} \]
\[E_2 = \left(E_{x2}, E_{y2}, E_{z2} \right) e^{+\alpha_2 y - ikz} \]

Magnetic fields
\[H = \frac{-1}{i\omega\mu_0} \bar{\mu}^{-1} \cdot \nabla \times \mathbf{E} \]

Graphene sheet
\[\varepsilon_1, \mu_1 \]

Ferrite
\[\varepsilon_2, \bar{\mu}_2 \]
\[\mu_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \mu_{rd2} & -\mu_{ro2} \\ 0 & \mu_{ro2} & \mu_{rd2} \end{bmatrix} \]

Electric fields
\[H_1 = \left[\frac{i}{\mu_0 \mu_{r1} \omega} \left(iE_{y1} k e^{-\alpha_1 y - ikz} - E_{z1} \alpha_1 e^{-\alpha_1 y - ikz} \right) \right] \]
\[\frac{E_{z1} k}{\mu_0 \mu_{r1} \omega} e^{-\alpha_1 y - ikz} \]
\[\frac{iE_{y1} \alpha_1}{\mu_0 \mu_{r1} \omega} e^{-\alpha_1 y - ikz} \]

Magnetic fields
\[H_2 = \left[\frac{i}{\mu_0 \omega} \left(iE_{y2} k e^{\alpha_2 y - ikz} + E_{z2} \alpha_2 e^{\alpha_2 y - ikz} \right) \right] \]
\[- \frac{iE_{z2} \alpha_2}{\mu_0 \omega} \left(\mu_{rd2} + \frac{\mu_{ro2}^2}{\mu_{rd2}} \right) \left(\mu_{rd2} + \frac{\mu_{ro2}^2}{\mu_{rd2}} \right) \left(\mu_{rd2} + \frac{\mu_{ro2}^2}{\mu_{rd2}} \right) \]
\[- \frac{iE_{y2} \alpha_2}{\mu_0 \omega} \left(\mu_{rd2} + \frac{\mu_{ro2}^2}{\mu_{rd2}} \right) \left(\mu_{rd2} + \frac{\mu_{ro2}^2}{\mu_{rd2}} \right) \left(\mu_{rd2} + \frac{\mu_{ro2}^2}{\mu_{rd2}} \right) \]
Analysis 2

Boundary condition:

\[\mathbf{a}_y \times (\mathbf{H}_1 - \mathbf{H}_2) = \sigma \mathbf{E}_T \]

\[
\begin{bmatrix}
\frac{1}{\mu_0 \mu_r \omega (\mu_{rd}^2 + \mu_{ro}^2)} \left(iE_{x1} \alpha_1 (\mu_{rd}^2 + \mu_{ro}^2) - E_{x1} \mu_0 \mu_r \omega \sigma (\mu_{rd}^2 + \mu_{ro}^2) + E_{x2} \mu_r (i\alpha_2 \mu_{rd} + \mu_{ro} k) \right) \\
0 \\
\frac{1}{\mu_0 \mu_r \omega} (E_{y1} k - E_{y2} \mu_r k + iE_{z1} \alpha_1 - E_{z1} \mu_0 \mu_r \omega \sigma + iE_{z2} \alpha_2 \mu_r) \\
\end{bmatrix}
= 0
\]

(1)

Normal components:

\[\nabla \cdot \mathbf{E} = 0 \]

\[E_{y1} = -\frac{iE_{z1}}{\alpha_1} k \quad E_{y2} = \frac{iE_{z2}}{\alpha_2} k \]

Substituting into (1)

\[
\begin{bmatrix}
0 & B_{12} \\
B_{21} & 0
\end{bmatrix}
\begin{bmatrix}
E_{x1} \\
E_{z1}
\end{bmatrix}
= 0
\]

\[B_{12} = \frac{1}{\mu_0 \mu_r \omega (\mu_{rd}^2 + \mu_{ro}^2)} \left(i\alpha_1 (\mu_{rd}^2 + \mu_{ro}^2) - \mu_0 \mu_r \omega \sigma (\mu_{rd}^2 + \mu_{ro}^2) + \mu_r (i\alpha_2 \mu_{rd} + \mu_{ro} k) \right) \]

\[B_{21} = \frac{i\alpha_1}{\mu_0 \mu_r \omega} + \frac{i\alpha_2}{\mu_0 \omega} - \sigma - \frac{ik^2}{\alpha_2 \mu_0 \omega} - \frac{ik^2}{\alpha_1 \mu_0 \mu_r \omega} \]
Analysis 3

\[
\begin{bmatrix}
0 & B_{12} \\
B_{21} & 0
\end{bmatrix}
\begin{bmatrix}
E_{x1} \\
E_{z1}
\end{bmatrix} = 0
\]

Eigenvalues & eigenvectors

\[B_{21}(k) = 0, \quad \begin{bmatrix} 0 \\ E_{z1} \end{bmatrix}\]

TM, reciprocal

\[B_{12}(k) = 0, \quad \begin{bmatrix} E_{x1} \\ 0 \end{bmatrix}\]

TE, nonreciprocal

Getting \(\alpha_1(k)\) and \(\alpha_2(k)\):
\[
\nabla \times (\bar{\mu}_r^{-1} \nabla \times \mathbf{E}) - \omega^2 \mu_0 \varepsilon_0 \varepsilon_r \mathbf{E} = 0, \quad \nabla \cdot \mathbf{E} = 0
\]

Region (1)

\[
\begin{bmatrix}
E_{x1}(-\alpha_1^2 - \varepsilon_0 \varepsilon_r \mu_0 \mu_1 \omega^2 + k^2) \\
iE_{z1} / \alpha_1 k(\alpha_1^2 + \varepsilon_0 \varepsilon_r \mu_0 \mu_1 \omega^2 - k^2) \\
E_{z1}(-\alpha_1^2 - \varepsilon_0 \varepsilon_r \mu_0 \mu_1 \omega^2 + k^2)
\end{bmatrix} = 0
\]

Region (2)

\[
\begin{bmatrix}
E_{x2} / \alpha_2 \mu_{rd2}^2 + \mu_{ro2}^2 (-\alpha_2^2 \mu_{rd2}^2 - \varepsilon_0 \varepsilon_r \mu_0 \mu_{rd2}^2 \omega^2 - \varepsilon_0 \varepsilon_r \mu_0 \mu_{ro2}^2 \omega^2 + \mu_{rd2} k^2) \\
iE_{x2} / \alpha_2 k(-\alpha_2^2 - \varepsilon_0 \varepsilon_r \mu_0 \omega^2 + k^2) \\
E_{x2}(-\alpha_2^2 - \varepsilon_0 \varepsilon_r \mu_0 \omega^2 + k^2)
\end{bmatrix} = 0
\]
Analysis 4

\[\alpha_1 = \sqrt{-\varepsilon_0 \varepsilon_r \mu_0 \mu_{r1} \omega^2 + k^2} \]

\[\alpha_2 = \sqrt{-\varepsilon_0 \varepsilon_r \mu_0 \mu_{r2} \omega^2 - \frac{\varepsilon_0 \varepsilon_r}{\mu_{rd2}} \mu_0 \mu_{ro2}^2 \omega^2 + k^2} \]

Dispersion equation:

\[
\left(-\mu_0 \mu_{r1} \omega \sigma (\mu_{rd2}^2 + \mu_{ro2}^2) + \mu_{r1} \right) \left(i \mu_{rd2} \sqrt{\frac{1}{\mu_{rd2}} \left(-\varepsilon_0 \varepsilon_r \mu_0 \mu_{ro2}^2 \omega^2 + \mu_{rd2} \left(-\varepsilon_0 \varepsilon_r \mu_0 \mu_{rd2} \omega^2 + k^2 \right) + \mu_{ro2} k \right)} + i (\mu_{rd2}^2 + \mu_{ro2}^2) \right) = 0
\]

indicating nonreciprocity
Results - Ferrite Substrate Permeability Tensor

ferrite parameters:

\(f_0 = 50 \, GHz \)
\(f_m = 10.6 \, GHz \)
\(\alpha = 0.05 \)

\(B_0 = 1.8 \, T \)
\(\mu_0 M_s = 0.38 \, T \)

Circularly polarized waves
Graphene Intraband and interband conductivities

graphene parameters:

\[\mu_c = 0.1 \text{ eV} \]
\[\tau = 0.2 \text{ ps} \]
\[T = 300 \text{ K} \]
Dispersion Curves – Isolation Result

Phase nonreciprocity

Loss nonreciprocity

Substrate parameters:

\[\varepsilon_{r1} = 1, \quad \mu_{r1} = 1 \]
\[\varepsilon_{r2} = 9 \]

Isolation: -10 dB/cm
DC-Current-Based Graphene Plasmonic Isolator

- DC current
- Magnetic field
 - LHCP Forward
 - RHCP backward
- Ferrite
- DC magnetic field of the current above and below graphene
I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIPROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIROCAL PHASE SHIFTER
 II. NON-RECIROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
Broadside Coupled P-N Doped Graphene Strips

chemically doped

electrically doped
Magnetic Sensor

Port 1

Port 2

V₀

B₀

excited edge mode

output signal

graphene edge mode coupler

magnetic regions

non-magnetic regions

excited edge mode

no output signal

graphene edge mode coupler

non-magnetic regions

magnetic regions
I. INTRODUCTION TO GRAPHENE MAGNETOPLASMONS

II. PRINCIPLES OF NON-RECIROCITY

III. STRUCTURES AND DEVICES
 I. NONRECIPROCAL PHASE SHIFTER
 II. NON-RECIPROCAL COUPLER
 III. MAGNETOPLASMONIC ISOLATORS
 IV. MAGNETIC SENSOR

❖ CONCLUSIONS & QUESTIONS
Phase shifter

Coupler

Isolators

Graphene-ferrite isolator

Magnetic sensor