Broadband Flat-base Luneburg Lens Antenna for Wide Angle Scan

Sidharath Jain, Raj Mittra and Mohamed Abdel-Mageed
Department of Electrical Engineering
The Pennsylvania State University, University Park, PA
Outline

- Introduction and Motivation
- Luneburg Lens Principle and Design
- Flat-base Luneburg Lens Design
- Waveguide Array Design
- Results
- Conclusions
Introduction and Motivation

- Luneburg Lens has recently come to light as an attractive alternative to phased arrays and mechanical rotation for making antennas for large angle beam scanning applications.

- Luneburg Lens is a spherical lens and therefore in order to scan large angles it is required to have a transmit and receive array which is conformal to the spherical surface of the lens.
Introduction and Motivation

- Transformation optics has been used to flatten one of the spherical surface of the Luneburg lens so that it is compatible with planar feed and receive arrays.
- But it requires material with $\varepsilon_r < 1$ which are difficult to fabricate with low losses and over high band widths.
- Therefore most researchers replace the materials with $\varepsilon_r < 1$ with $\varepsilon_r = 1$ which deteriorates the performance of the lens.

Replace $\varepsilon_r < 1$ with $\varepsilon_r = 1$

Ma and Cui Nature Communications 2010
Luneburg Lens Principle and Design

Wavelength (λ_0) = 10 mm
Center Frequency (f_0) = 30 GHz
Diameter of the Lens = 63.5 mm = 6.35λ_0

$$n = \sqrt{\epsilon_r} \sqrt{1 - \frac{r}{R}} = \sqrt{2 - \left(\frac{r}{R}\right)^2}$$
Focusing a Plane Wave

Amplitude of Ex
Phase of Ex

Observe the fields in a plane parallel to the direction of propagation of the plane wave and passing through the center of the lens.

A plane wave gets focused at a point on the opposite end of the diameter parallel to the plane wave.
Flat base Luneburg Lens Antenna Design

dielectric (ε_{r1})
dielectric (ε_{r2})
dielectric (ε_{r3})
dielectric (ε_{r4})
dielectric (ε_{r5})
dielectric (ε_{rf1})
dielectric (ε_{rf2})
dielectric (ε_r)
Foot Print of the Flat-Base Luneburg Lens Antenna
Waveguide Array Design

- **Two Waveguide Array Designs**
 - **PEC Waveguide Array**
 - (Red) PEC
 - (Blue) PEC
 - Up to few hundred GHz
 - **High \(\varepsilon_r\) Dielectric Waveguide Array**
 - (Red) Air
 - (Blue) Dielectric \(\varepsilon_r = 50\)
 - Above few hundred GHz
Flat-base Luneburg Lens with 6x6 Array Feed
Aperture Field Amplitude (Ex)

30 GHz
Aperture Field Phase (Ex)

Plane Wave propagating at an angle out of the aperture plane
Radiation Pattern (Gain (dBi))

Excitation

Scan Angle 12°

30 GHz
Radiation Pattern (Gain (dBi))

Excitation

Scan Angle 41°
Radiation Pattern (Gain (dBi))

Excitation

Scan Angle 64°

30 GHz
Directivity (dBi) as a function of Φ

Scan angles of 12°, 41° and 64° were obtained by exciting Ports P1, P2 and P3, respectively.
Maximum Directivity (dBi) as a function of Frequency

Scan angles of 12°, 41° and 64° were obtained by exciting Ports P1, P2, and P3, respectively.
Simultaneous Excitation: Radiation Pattern (Gain (dBi))

Two Ports Excited

Multiple Excitations can lead to plane waves in multiple directions

Scan Angle 41° and -41°
Radiation Pattern (Gain (dBi))

Multiple Excitations can lead to plane waves in multiple directions

Scan Angle 42° and -42°
Gain

• Maximum gain (G_{max}) for $D=63.5$ mm at 30 GHz is 25.99 dB assuming uniform field distribution in the aperture.

• Gain of our antenna (aperture size 6.35λ) is 23.75 dB for scan angle 41°. (25.99 dBi for constant field distribution in aperture)

• Gain of Cui et al. TO lens (aperture size 5.4 lambda) is 21 dBi for scan angle of 45°. (24.59 dBi for constant field distribution in aperture)

\[G_{\text{max}} = \frac{4\pi A_e n}{\lambda^2} \]

<table>
<thead>
<tr>
<th>Freq (GHz)</th>
<th>G_{max} (dBi) (constant)</th>
<th>Gain (PEC with air gap)(dBi)</th>
<th>Gain($\varepsilon_r=50$ with air gap)(dBi)</th>
<th>Gain (PEC)(dBi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24.06</td>
<td>21.73</td>
<td>12.41</td>
<td>21.89</td>
</tr>
<tr>
<td>28</td>
<td>25.40</td>
<td>22.86</td>
<td>20.0</td>
<td>23.30</td>
</tr>
<tr>
<td>30</td>
<td>25.99</td>
<td>23.42</td>
<td>21.88</td>
<td>23.75</td>
</tr>
<tr>
<td>36</td>
<td>27.58</td>
<td>23.61</td>
<td>21.85</td>
<td>24.14</td>
</tr>
<tr>
<td>40</td>
<td>28.5</td>
<td>24.05</td>
<td>20.48</td>
<td>24.46</td>
</tr>
</tbody>
</table>
Conclusion

• The proposed Luneburg lens design can electronically scan angles as large as 64° both along azimuth and elevation.
• Extremely broadband as no upper cut off frequency (Lower Cut off 21.5 GHz)
• Side lobe level below 13dB (No False Alarms (due to grating lobes) as in Phased Arrays)
• The 3-dB beam width resolution for the proposed design is nearly 12°
• Simultaneous multiple angle scan capability.
• Very high gain of 24.58 dB (constant aperture field gain 25.99 dB)
• Design for desired gain and scan angle possible by
 – Varying the aperture size
 – Varying the size of feed array
• Better performance than the flattened transformed Luneburg lens (2010 Nature Cui) in terms of gain (23.7 dB) and scan angle (30°) for the given aperture size.
BACK UP SLIDES
Literature Survey: Exciting Using a Waveguide

Frequency of operation = 12.5 to 18 GHz

Ma and Cui Nature Communications 2010
Simulated Far Field Radiation Pattern

Figure 3 | Simulated 3D far-field radiation patterns of the 3D lens at 15 GHz. (a) The feeding source is located at the centre of the focal plane ($x = 0$ and $y = 0$). (b–d) The feeding source is located 10, 20 and 30 mm off the centre of the focal plane ($x = -10, -20$ and -30 mm, and $y = 0$).

Ma and Cui Nature Communications 2010