Wearable Technology and Mobile Platform for Human Health Monitoring

Vijay K. Varadana, Pratyush Raib, Se Chang Ohb and Prashanth Shyam Kumarb

aDepartment of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701

Abstract—Health and long term care is a growth area for wearable health monitoring systems. Wearable diagnostic and therapeutic systems can contribute to timely point-of-care for patients with chronic health conditions, especially chronic neurological disorders, cardiovascular diseases and strokes that are leading causes of mortality worldwide. Diagnostics and therapeutics for patients under timely point-of-care can save thousands of lives. However, lack of access to minimally-intrusive monitoring systems makes timely diagnosis difficult and sometimes impossible. Existing ambulatory recording equipment is incapable of performing continuous remote patient monitoring because of the inability for conventional silver-silver-chloride-gel-electrodes to perform long-term monitoring, non-reusability, lack of scalable-standardized wireless communication platforms, and user-friendly design. Recent progress in nanotextile biosensors and mobile platforms has resulted in novel wearable health monitoring systems for neurological and cardiovascular disorders. This chapter discusses nanostructured-textile-based dry electrodes that are better suited for long-term measurement of electrocardiography (ECG), electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), and bioimpedance with very low baseline noise, improved sensitivity, and seamless integration into garments of daily use. It discusses bioelectromagnetic principles of origination and propagation of bioelectric signals and nanosensor functioning, which provide a unique perspective on development of novel wearable systems that harness their potential. Combined with state-of-the-art embedded wireless networks, they can function as wearable wireless health-diagnostic systems that are more intuitive to use.

Index Terms—textile nanosensor, smart textile, wireless, bioelectromagnetism, ECG, EEG, EOG, EMG, cardiovascular disorder, neurological disorder

I. INTRODUCTION

Public spending on health and long term care in Organization for Economic Co-operation and Development (OECD) member countries and BRICS (Brazil, Russia, India, Indonesia, China, South Africa) is 6% of the GDP and is projected to increase up to 14% in the next 50 years\cite{1}. Chronic disease diagnosis and treatment are the primary causes for this increase. Patients suffering from chronic diseases need to repeatedly visit the hospital, which can be expensive. As a solution to this, remote Point-of-Care (POC) systems and Remote Patient Monitoring (RPM) systems can be used. Remote patient monitoring for point-of-care facilitates the monitoring of a patient’s health condition at local or remote places without the need for hospital admission or visit. In ease of high risk patients, it can provide the patient with real-time feedback from a medical center.

Wearable nanosensor systems in the form of smart clothing, equipped with wireless communication technology, provides real-time medical data to health professionals for early diagnosis, planning therapeutic intervention, and following up on the effect of planned therapy. Techniques, such as electrocardiography (ECG), electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) and electrical impedance tomography, are relevant to POC for cardiovascular disease, neurological disorders, cancer, and stroke.

A. Wearable sensor systems

Intelligent wearable sensor systems with simple installation, minimal maintenance, and user involvement can be the best method for ubiquitous health monitoring. They combine high sensitivity of nanosensors with cost-effective and lightweight textiles. Long-term, real-time health monitoring is useful in chronic diseases for event detection, onset of critical episodes, and disease management through diagnostics and therapeutics\cite{2}. Unobtrusive wearable health monitoring is found to be effective in prevention and early diagnosis of neurological and cardiovascular disease by non-invasively monitoring a person’s vital signs and physiological data\cite{3}.

The design of a wearable sensor system is a multidisciplinary effort that involves expertise in various domains including textile engineering, material science, biomedical engineering, wireless communication, cyber-physical systems, and data interpretation algorithms, security...
and management. Achieving the full potential of wearable sensor systems poses various challenges to the state of the art in all the stated domains.

Smart garments as an embodiment of wearable nanosensors systems can use the textile platform as a substrate to integrate the various components of the system or use the textile platform as an active or passive sensing material. The smallest unit of a textile platform are fibres or filaments the constitutes the fibers. A textile platform is formed by the weaving stitching and fusing of these fibres or filaments. The development of innovative techniques for the integration of fibers to form textiles can result in many textile materials with varying length, cross-section area and shape, and surface roughness. Furthermore, engineering fibers or filaments to introduce intelligent functionality at different levels of fiber, such as material, shape, thin film coating and density, will help incorporate high density sensor electronics in textile. Thorough knowledge of the physics behind the interaction of textiles and human skin will help design sensors that require constant contact with wearer’s skin and without any skin preparation needs.

There are technical challenges in the steps for wireless communication, signal processing and cyber-physical systems. Wearable sensor systems require a system architecture that provides secure, reliable and high fidelity access to patient data for medical professionals. Furthermore, from both the patient and medical professional’s perspective, in terms of adoption of new technologies, system architecture design should carefully consider intuitive user interfaces and simplicity of setup and maintenance of the entire system from the individual components of the wearable to the database solutions for data management. Improvement in microprocessor technology is required to put more signal conditioning and computation on the textile platform. In addition, the wireless communication electronics have to be designed that can communicate with other smart wireless devices in the user space such as smart phones and tablet PCs to harness their computation and communication capabilities to eventually upload the data to server. Such that, the data is accessible to data scientists and medical doctors for interpretation.

From the electronics design perspective, the form factor, battery longevity and performance in terms of data communication rates and fidelity of data acquired through wearables pose areas of potential improvements. The challenges faced in design are unique to the requirements of the intended wearable system. A detailed catalogue for the different challenges faced is beyond the scope of this manuscript. However, patterns of design for wearable systems architecture is a burgeoning body of knowledge. The immediate challenges lie in the formulation of consensus standards for data communication, data security and thorough clinical validation of wearable systems in medicine and patient care.

In this review, nanotextile based wireless biosensor systems have been described. Over the past few decades, advancements impervasive information and communication technologies, coupled with microelectronics and systems development have provided an opportunity for the integration of electronics with functional textiles. The confluence of these two fields has radically transformed the norms of computing and embedded systems into soft textile interfaces [4]. In the section on Smart textile for health monitoring, the concept of textile as a health monitoring platform is explained along with a discussion on newly developed nano and micro scale fiber structures, composite materials and coatings that integrate with textile fabrics to create smart textiles. The section on Electrical signals from brain and heart offers a brief development of the prevalent models used to describe the relationship between the activity of a single neural cell or cardiac myocyte and the characteristic bioelectric signals measured at the level of the skin-electrode interface (EEG, ECG, EOG and EMG) and a comparison between planar textile electrodes and nanostructured electrodes. In the section on Monitoring and Diagnosis, we describe the bioelectric signals of diagnostic value for both neurological and cardiological disorders.

The section on Monitoring systems talks about different types of wireless protocols that are used in current state-of-the-art wireless sensor systems. Finally, in sections Neurological Disorder monitoring by Wearable Wireless Nano-Bio Textile sensors, Cardiovascular Health Monitoring, and Biofeedback system for therapeutics, numerous applications have been showcased to demonstrate the cutting edge of textile-based wearable health monitoring technology for neurological and cardiovascular health disorders.

II. SMART TEXTILE FOR HEALTH MONITORING

Current technologies for measuring and recording biopotential signals discussed in the section on Monitoring systems are suitable for bedside monitoring, with the exception of the Holter monitor. POC diagnostics and therapeutics require systems capable of ambulatory and/or remote monitoring. Such systems will allow patients and high risk individuals to stay in their homes and follow their routine, while continuous monitoring of their neural and/or cardiac functions can be performed remotely. The key to successful adoption of remote health care is invisibility, i.e. sensors that do not interfere with quotidian activities of the individuals and at the same time efficiently monitor parameters critical to neural and cardiac health.

A. Textile platform for nano-biosensors

Textile based sensor systems are flexible sensors that are made of textile or have a suitable texture and flexibility to embed or integrate into textiles of daily use. The resultant functionalized textile is called e-textile or smart textile. They are distinct from wearable computing systems because they emphasize seamless integration of textile with sensors and sensor electronics. Textiles are preferred for the integration of biomedical sensors because they are the most natural materials to use close to the human body. Thus, they facilitate unobtrusive observation, where they simply sense and record physiologial signals of the subject without any kind of active interaction with the subject.

Textile based nano-biosensor systems can be integrated with compact textile integrated wireless electronics, with the help of woven or printed connections, for remote wireless
health diagnostics[5]. It eliminates the use of stick-on-glue-based electrodes and can be worn without the help of medical personnel, which is, therefore, a desirable diagnostic system in hospital as well as remote locations.

Smart textile has been an area of focus for space exploration, biomedical, and consumer electronics communities for their potential to significantly augment the Body Area Network (BAN) [6,7,8], which is also known as internet of things. Xiaoming Tao describes Smart Textile as a class of smart materials and structures that sense and react to environmental conditions or stimuli. Smart textiles can be divided into three subcategories. Passive smart textile can only sense environmental conditions and stimuli. Active smart textiles can sense and react to environmental conditions and stimuli. Very smart textiles can sense, react and adapt to environmental conditions and stimuli. In addition to these types, intelligent textiles can cause predictable effects or phenomena by interacting with the environment and the wearer [9-11]. By this definition, nanotextile based wireless biosensor systems are wearable smart nanosystems.

The smallest units of the textiles are fibres or filaments. Innumerable combinations of these units can result in many textile materials with varying length, cross-section area and shape, and surface roughness. The intelligent functionality can be introduced into textiles at different levels. At the fibre level, a coating can be applied or threads can be added to make a composite textile. Fibres of different types can be arranged at random or strictly organized ways in yarns or fabrics to form even 3D structures. These structures can be metalized or functionalized to fabricate a conductive textile electrode and other functional surfaces with micro or nanorod, micro or nanocoil array.

Smart textile (fabric) can be made from materials ranging from traditional cotton, polyester, and nylon to advanced Kevlar with integrated functionalities. However, in the scope of the present review, fabrics with electrical conductivity are of interest. There are two kinds of smart textile (fabric) products that have been developed and studied for health monitoring fabric with textile based sensor electronics [12-16] and fabric that envelopes traditional sensor electronics [17,18]. Pioneering research work, done by Jayaraman and co-workers, showed that weaving can be used to incorporate electrically conductive yarn into the fabric to obtain a textile that can be used as a “Wearable Motherboard.” It can connect multiple sensors on the body, such as wet gel ECG electrodes, to the signal acquisition electronics [12,13]. Later researchers have shown that conductive yarns can be instrumental in fabrication of textile based sensors made of fabric [14,15] or metallic meshes [16] coated with silver or conductive metal cores woven into the fabric [19].

B. Nanostructured textile

Naturally occurring fibers have diameters in the order of microns, where the smallest diameter is on silk fiber (10µm). It is a common conception that textiles made of fibers with diameter in nanometer scale can be deemed as textiles fit for nanosensor applications. These textiles, integrated into the fabric, can serve as different components of smart sensor system.

Based on the degree of integration, the combination of electronics and textiles can be divided into embedded electronics, textronics, and fiberonics. Embedded electronics uses textiles as a platform for building in readily available off-the-shelf electronics (e.g., Philips illuminative LED shirts and Lifeshirt by VivoMetrics [20]). These can be nanosensor chips made with state of the art nanofabrication techniques. In such smart textiles, the electronics have to be disconnected prior to washing because they cannot endure washing.

Textronics uses electronic components manufactured by using textile materials and textile production techniques. Nanocomposites and nanoparticles can be incorporated in the textile to form sensitive layers and sensor connects. Mazz et.al and Rossi et.al have developed polypyrrole on Lycra and carbon-filled-rubber-based printable sensors for the measurement of posture, movement, and respiration. These textronics-based suits have been demonstrated for monitoring rehabilitation, studying ergonomics, virtual reality, and ambulatory monitoring [21,22]. Due to the limitation of materials and fabrication techniques, complex electronic components, such as microprocessors, cannot be fabricated as textronics and should still be embedded in textiles. Research work done by Clemens et.al. [23] attempts to integrate basic electronic building blocks, such as semiconductor electronics, in yarns for fabrication of transistors on textile. This fiberonics technology can help in full inclusion of microprocessors along with nano-biosensors in future textiles.

Textronics has the potential for creating textiles with new attributes, while keeping them flexible and washable. For textronic technology, knowledge of and access to textile production is necessary. There are many textile production techniques that can be used to build electronic components. A commonly used concept for making textile based sensors and electronics is weaving or knitting conductive thread into the garment fabric. Jacquard loop weaving can weave conductive yarn into specific patterns for making conductive tracks, contacts, and antennas [24]. Plain and circular knitting, warp knitting, or crocheting can be used for knitting of conductive yarns into making textile electrodes and strain sensors(e.g. GOW trainer [17], Numetrex by Adidas [3,25], Wearable Wellness System from Smartex s.r.l. Pisa Italy [26]). Embroidery of conductive yarns into textiles can be useful in making wearable keyboards [27] and antennas [28].

C. Nanotextured textiles as electronic sensors

Smart textile can serve as a platform for electrophysiological sensors that require being in contact with the body. Studies have shown that the textile based sensor electrodes are as reliable as the conventional silver-silver chloride gel based electrodes for detection of ECG signals [29-31].

Textile, as a substrate, can support nanostructures grown on it [32], embedded as composite [33], embedded/mounted as nanomaterials based devices [34-36], or nanomaterials based coating and dyes [37,38]. Conductive fabrics can be obtained by weaving conductive yarn into fabric [39], coating
conductive layers on fabric surfaces by chemical processes, such as polymerization \[40\], electroless plating \[41,42\], and electroplating \[43\], or physical processes such as vacuum sputter deposition \[44,45\]. Incorporation of nanofibers in the textile is also possible by drawing out nano-filaments using electrospinning technique \[46\]. Alternatively, pre-extruded nanofibers can be deposited with the help of electrodeposition. In either case, the nanofibers form a mat or a web that renders the textile substrate as nanotextured. These textile surfaces have a large surface area and surface-to-volume ratio. The large surface area improves the absorption or adsorption property of the textile substrate to make them useful as sensor layer for gas sensors \[47\], biological sensors \[48\], chemical sensor \[49\], biomedical textile \[50\], water purifier \[51\], and electrodes for biopotential measurement \[52\].

Free standing aligned nanostructures can be obtained on textile electrode surfaces by using the traditional technique of flocking. It uses electric field or pneumatic force to drive down millions of individual fibers that have a static charge on them. The electric field, in particular, aligns the charge fibers vertically, and static charge ensures that they are apart from each other. The vertically aligned fibers are driven down on to a flexible surface, such as textile or polymer substrate, and pretreated with adhesive for the fibers to get planted \[53\]. Synthetic long chain polymers, such as polyester, nylon, polyimide, and polyaramid, are melt blown, solution blown, or extruded and spun into fibers on spinneret. The techniques for drawing out the fibers can be modified to obtain fibers with diameter in the order of nanometers \(40-2000\) nm. These processes can obtain fibers that are only as wide as the single layer crystal made of polymer chains \[54\]. The conventional synthetic polymer fiber spinning technology has been improved to produce composite fiber. A mixture of two polymers, that are mutually immiscible, can be drawn into fibers by extrusion, such that, one polymer forms long fibers in a matrix of the other. A cross-section of such a fiber shows that \(60-1500\) islands of one polymer’s fibers are distributed in a sea of the other polymer, thus giving the impression of islands in sea \[55\]. Composite fibers are best suited because they can be flocked as microfibers, and then bundled island polymer nanofibers can be released by dissolving the sea polymer (Figure 1). This is followed by metallization of the structures with silver by electroless plating method.

The surface of sensor electrodes can have nanoscale and mesoscale free standing conductive structures. This contributes to increasing the effective surface area of the electrodes, and high aspect ratio nano/mesoscale structures can overcome the obstruction due to rough skin surface and body hair (Figure 13). A good skin-electrode interface with these nanostructured sensor electrodes is instrumental in detection of electrophysiological signals emanating from brain and heart to the skin surface. Figure 14 shows that the next step would be to understand the principles behind the signals generated by the brain and heart. This understanding should then be extended to the skin-electrode interface to study the effects of nanostructures sensor electrodes on monitoring of signals that are important for diagnosis of neurological and cardiovascular disorders.

III. ELECTRICAL SIGNALS FROM BRAIN AND HEART

The nanotextile based biosensors for EEG, EOG, EMG, and ECG detect bioelectromagnetic signals generated by brain, muscles, and heart, while being in contact with the skin. In this section, the bioelectromagnetism involved in the origination and propagation of bioelectric signals of interest, i.e. EEG, EOG, EMG, and ECG, have been presented. This will lay the ground work for electromagnetic theory of skin-electrode interface to explain the superiority of nanostructured electrode over plane and microstructured electrodes. Thus, emphasizing the potential for development of novel systems through a ground-up understanding of the signal sources, i.e. neurons of brain tissue and myocytes of heart tissue respectively.

A. Neurological anatomy and electrophysiology

The brain is the central organ of nervous system, which reaches every part of the body. It is responsible for sensory functions such as vision, touch, hearing, taste, and smell. The brain is the center of cognitive functions such as logical thinking, speech, language, and creativity (Figure 2).

Most of the volume of brain is made up of cerebrum covered with cerebral cortex, which is a thick layer of neural tissue. It is divided into four lobes, namely frontal lobe, parietal lobe, temporal lobe, and occipital lobe. Within each lobe there are numerous areas, each associated with a particular function. Cerebrum is separated into two hemispheres by a groove called the medial longitudinal fissure. The left and right
hemispheres contain almost similar cortical area. However, some areas show lateralization, especially areas related to language, are strong on left side and spatiotemporal reasoning are strong on right side [56]. The cerebrum sits on top of the brainstem, which is a bundle of cranial nerves that connect the brain to motor and sensory systems in the rest of the body. It also plays an important role in regulation of cardiac functions, respiratory functions, sleep cycles and facial movements. The cerebellum is situated behind the brainstem and below the cerebrum. It also has a cortical layer with a horizontally furrowed surface called the cerebellar cortex. This part of the brain plays important role in motion control. Though it does not initiate the impulse for motion, it receives and integrates inputs from sensory systems and the spinal cord to fine tune motor activities [57].

B. Electroencephalogram (EEG)

An electroencephalogram can be defined as a recorded electric field of the human brain. It can be attributed to phenomena, which are largely classified into three categories: spontaneous activity, evoked potentials, and bioelectric events produced by single neurons. Spontaneous activity implies all neural activities that occur continuously in a living individual, and it is measured on the scalp or on the brain surface. The respective components are the most prominent features of EEG signals, with an amplitude of about 100µV on the scalp and 1-2 mV on the brain surface. The signal frequency bandwidth is between 1Hz and 50 Hz. Evoked potentials arise in response to a stimulus (auditory, visual, electrical, etc.). The relevant EEG signal amplitudes are below the noise threshold. Hence, they are discernible only after averaging the signals in response to a train of stimulus to improve signal to noise ratio.

Single neuron bioelectric events can be recorded by using micro/nano electrodes implanted in the brain. It is of particular importance in monitoring activity of neural clusters to detect asynchronous firing of neurons, which is used as biofeedback by pace making devices.

C. Bioelectromagnetism of nerve cell action potential

A nerve cell has three parts (Figure 3): cell body soma, numerous short dendrites, and single long nerve fiber axon. The nerve cell body is similar to that of any other cell with a nucleus, mitochondria, endoplasmic reticulum, and other organelles. The short dendrites receive impulses from one or more neighboring nerve cells and transfer them to the soma. The effect of these impulses can be excitatory or inhibitory. The axon fiber transfers signal from soma to other nerve cells or muscle cells. The axon communicates with the adjacent nerve cell or muscle cell through synapse. The neural impulse passes unidirectionally from the axonal presynaptic terminal to the postsynaptic terminals on the cell through chemical neurotransmitters.

The membrane of nerve cells is a bilayer film made of amphiphilic phosphoglycerides. The cell membrane has macromolecular pores, which selectively allow sodium, potassium, and chloride ions to flow through them. The difference between intra cellular ion concentration and extra cellular concentrations results in a resting trans-membrane potential \(V_m \), where \(V_i \) is inner surface potential and \(V_o \) is outer surface potential of the membrane.

\[
V_m = V_i - V_o
\]

Resting trans-membrane potential is normally negative (-70 mV). This is made possible by ionic concentration gradients of Na\(^+\) and K\(^+\) ions. The extracellular concentration of Na\(^+\) is 10 times higher than intracellular concentration, whereas, intracellular concentration of K\(^+\) is 30 times higher than extracellular concentration (Figure 4). If a nerve cell is stimulated, \(V_m \) can depolarize by change of \(V_i \) in the positive direction or hyperpolarize by change of \(V_i \) in the negative direction with respect to \(V_o \). Thus, deeming the stimulus as excitatory or inhibitory respectively [57].
point where \(V_n \) reaches 20 mV, which is followed by rapid change in permeability of potassium. This allows potassium ions to flow from inside to outside, thus bringing \(V_i \) back to its resting value. The duration of this \(V_m \) impulse is ~1 ms. This is followed by restoration of intra- and extracellular ionic concentrations by the action of Na-K pump, which is another macromolecular pore in the membrane [57].

The stimulus voltage results in traveling action potential from one nerve to another or to a muscle cell following the path-dendrites-soma-axon-. The action potential is produced by ion transport of Na\(^+\), K\(^+\), and Cl\(^-\) through the membrane. It depends mainly on the ratio of ion concentration inside to outside of membrane, voltage across the membrane, and membrane permeability of each ionic species. Under the quasistatic assumption, ion concentration ratio and membrane permeability are represented by Nernst voltage \(V_n \) at temperature \(T \) (°K) in Equation (2), where \(R \) is universal gas constant, \(c_{i,n} \) and \(c_{o,n} \) are ionic concentrations of the \(n \)th species, \(z_n \) is moles of electrons transferred during reaction of \(n \)th species, and \(F \) is Faraday’s constant, so the driving force for transportation of \(n \)th ionic species is given by \((V_m - V_n) \).

\[
V_n = \frac{-RT}{z_nF}\ln \frac{c_{i,n}}{c_{o,n}} \quad (2)
\]

The EEG signal arises from the field created by localized depolarization, i.e. excitatory postsynaptic potential (EPSP) or localized hyperpolarization, i.e. inhibitory postsynaptic potential (IPSP). Though the stimulus potential originates at the synaptic terminals and the resultant pulse (current) travels along the neural axon fibers, electrophysiological models consider potential source with a volumetric distribution and a conducting medium that extends continuously in three-dimensional space. They are referred to as volume source and volume conductor.

Bioelectric activity of nerve cell and muscle cells due to conversion of energy from chemical to electric form gives rise to a non-conservative current. This bioelectric source consists of electric current dipoles formed by charge separation. Hence, the impressed current density \(\mathbf{J}^i(x,y,z,t) \) is similar to volume dipole moment density of the volume source, where \(\mathbf{J}^i \) is zero outside of the active cells. An infinite homogenous conductor is a simple approximation of volume conductor. Total current density can be given by Equation (3). The primary sources \(\mathbf{J}^i \) establish electric field \(\mathbf{E} \) and resultant return current \(\sigma \mathbf{E} \). The return current avoids charge buildup.

\[
\mathbf{J} = \mathbf{J}^i + \sigma \mathbf{E} \quad (3)
\]

Under quasistatic condition, any change in source results in redistribution of charges across membrane. This is expressed mathematically as follows:

\[
\nabla \cdot \mathbf{J} = \nabla \cdot \mathbf{J}^i - \sigma \nabla^2 \mathbf{V} = -\sigma \nabla^2 \mathbf{V} \quad \text{where } \nabla \times \mathbf{E} = \nabla \mathbf{V} \quad (4)
\]

This Poisson’s equation in \(\mathbf{V} \) can be solved to get

\[
4\pi \sigma \mathbf{V} = -\iiint_{Vol} \left(\frac{1}{r} \right) \nabla \cdot \mathbf{J} \, dVol \quad (5)
\]

This solution can be extended to inhomogeneous volume conductor, but considering it to be composed of a finite number of homogeneous regions. The head as a volume conductor consists of brain, cerebrospinal fluid, skull, and scalp, not to mention the brain tissue can be divided into gray matter, white matter, and other tissue. Each \(p \)th homogeneous region (uniform conductivity \(\sigma \) and unit volume \(dV_p \)) has a boundary \(S_p \), which satisfies the conditions of continuity of electric potential \(\mathbf{V} \) (6) and the normal component of current density (7). The subscripts 1 and 2 represent either side of boundary \(S_p \).

\[
V_1(S_p) = V_2(S_p) \quad (6)
\]

\[
\sigma_1 \nabla V_1(S_p) \cdot \mathbf{n}_p = \sigma_2 \nabla V_2(S_p) \cdot \mathbf{n}_p \quad (7)
\]

Following the same steps as shown in Equations (3), (4) and (5) [58], the new expression for \(\mathbf{V} \) is

\[
4\pi \sigma \mathbf{V} = -\iiint_{Vol} \left(\frac{1}{r} \right) \nabla \cdot \mathbf{J} \, dVol + \sum_{p=1}^{N} \int_s \left(\sigma_p \nabla \mathbf{V}_p - \mathbf{J}_p \right) \cdot \mathbf{n}_p \, dS_p \quad (8)
\]

The first term on the right hand side is the contribution of the volume source because of the non-electric energy source \(\mathbf{J}^i \). The second term contribution of a surface source is the summation dipole elements that represent ionic double layers, described by Equations (6) and (7). Since neural tissue is composed of a very large number of small nerve cells, \(\mathbf{J}^i \) can be summed up as volume dipole moment density function.

\[
\mathbf{J}_i = \frac{\sum_{p=1}^{N} d\mathbf{n}_p}{\sum_{p=1}^{N} dv_p} \quad \text{where } d\mathbf{n}_p = \int \left(\sigma \mathbf{V}_p - \mathbf{J}_p \right) \, dS_p \quad (9)
\]

In an electrophysiological measurement, \(V \) can be measured. Thus, Equation (8) describes a problem where the field and the volume conductor are known, but the volume source is unknown. Such problems are called Inverse Problems [59]. This pertains to clinically measured EEG, where the neurologists seek to determine the source of the measured bioelectric signal (EEG). Similar principle applies to other electrophysiological signals such as ECG, EOG, and EMG. Though it is possible to evaluate the source function \(\mathbf{J}^i \) in case of ECG and EMG, it has not been completely feasible in EEG because of the complexity of brain structure and its electrophysiological behavior. Quantitative EEG is largely based on examination of lead patterns to calculate
sensitivity distribution of lead and estimate the statistically most probable source configuration, i.e. neurological conditions. However, clinical EEG diagnostics is typically based on recognition of typical signal patterns that are known to be associated with neurological conditions [60].

IV. CARDIOVASCULAR ANATOMY AND ELECTROPHYSIOLOGY

The human heart is a muscular organ consisting of four chambers: two upper chambers known as the atria and two lower chambers known as the ventricles, which are separated by muscular septum into right and left atria and ventricles respectively (Figure 5(a)). Oxygen-depleted blood from the peripheral organs are returned to the right atrium through the superior and inferior venacava. The contraction of the right atrium then forces blood into the right ventricle through a unidirectional heart valve known as the tricuspid valve. The right ventricle then contracts and pumps blood into the pulmonary artery, which takes the blood to the right and left lungs to exchange the carbon dioxide in the blood for fresh oxygen. Meanwhile, freshly oxygenated blood from the lungs is brought to the left atrium by the pulmonary vein. The left atrium then contracts and forces the blood into the left ventricle through a unidirectional valve called the mitral or bicuspid valve. Contraction of the left ventricle forces the blood through the semilunar valve into the aorta, which then branches out to several arteries and supplies fresh blood to all the cells in the body. The major blood vessels involved in the supply of blood to the cardiac tissue are Left and Right Coronary arteries that branch off from the aorta as shown in Figure 5 (b).

Figure 5 (a) A diagram of the internal anatomy of the heart with the impulse conduction pathway (b) Illustrates the blood vessels involved in the circulation of blood to the heart muscles.

A. Origin of Cardiac Electrophysiology – Cardiac Action Potential

Cardiac muscle cells, or myocytes, have a resting potential varying between -80mV and -90mV. The resting (transmembrane) potential (TP) difference is between the intracellular fluid and the extracellular fluid. This potential difference is maintained by the selectively permeable cell membrane that, in turn, maintains the difference in the sodium, potassium, calcium, chloride, and potassium ion concentrations between the two fluids. The TP is regulated predominantly by the Sodium and Potassium ion concentrations. The cell membrane has voltage-activated channels that transport ions into or out of the cell when triggered by a voltage impulse. As the voltage gated channels on the cell membrane are activated or deactivated by a voltage impulse travelling across the cell, the transmembrane potential varies with time. Figure 6 illustrates the time variation of the transmembrane potential in a single cardiac myocyte upon the arrival of an impulse.

Figure 6 Transmembrane potential variations over time for a single cardiac myocyte.

The transmembrane potential variation during the conduction of an impulse is called action potential. Upon the arrival of a positive impulse that shifts the TP above -70mV, a threshold voltage, rapid depolarization and movement of TP towards positive potentials occurs. This is due to the opening of the Sodium gated channels and rapid influx of sodium ions. Following this, Potassium and Chloride ion channels open and cause the TP to drop a little towards 0mV. This dip is denoted as Phase 1. In Phase 2, the influx of sodium ions, along with some Calcium ions and the efflux of Potassium ions are in equilibrium and the TP is maintained at a constant value. Phase 3 is the repolarization step when TP moves towards the resting TP. In this phase, the Potassium ions are rapidly exchanged for Sodium ions inside the cells to restore the initial ionic balance at resting TP. Calcium ion channels also reduce their conductance during this phase. Phase 4, is the resting TP condition. The cell processes from Phase 0 result in an increased intracellular Calcium ion concentration in the
muscle tissue, which initiates the release of energy by breaking down adenosine triphosphate (ATP) molecules and conformational changes in proteins that result in muscle contraction.[61].

B. Cardiac Impulse Conduction Physiology

The heart has a small group of cells, called sinusatrial node, located in the right atrium that are capable of generating impulses periodically. These impulses maintain the conduction rhythm of the heart and their direction of propagation maintains the progression of contraction, i.e. the atria contracts first, then the ventricles. This is often referred to as the natural pacemaker of the heart as it directly regulates the heart rate. Impulses are fed to the sinusatrial node by the Vagus nerve and parasympathetic and sympathetic nervous systems.

At the beginning of the cardiac cycle, the sinusatrial node generates an impulse which is carried to the atrioventricular node or the Bundle of His through the internodal pathway, which is made of a fiber of specially modified muscle cells. The impulse is conducted through the internodal pathway when the atria contracts. From the atrioventricular node, the conduction pathways split into the left bundle branch and the right bundle branch. The left bundle branch conducts the cardiac impulse along the left ventricle, while the right bundle branch conducts the impulse along the left ventricle. Both bundle branches end in Purkinje fiber cells, which are tree shaped and spread the cardiac impulse along the entire surface of the ventricles. Figure 5(a) illustrates the electrical conduction pathway from the sinusatrial node to the purkinje fibers.

C. Electrocardiograph (ECG) and Bioelectromagnetic origin and Dipole Theory for ECG

The electrocardiogram (ECG) is a simple non-invasive test to observe the variations in biopotentials originating from the heart, through electrode sensors placed on the surface of the skin. The ECG waveform acquired from a derived Lead II electrode placement system is shown in Figure 7, which clearly depicts the classical components of the ECG waveform. The waveform characteristics of the ECG include P wave, QRS complex, and T and U waves.

The P wave represents the wave of depolarization that spreads from the Sino-Atrial node throughout the atria and is usually 0.08 to 0.1 seconds in duration. QRS complex represents ventricular depolarization. The isoelectric period following the QRS complex is the time at which the entire ventricle is depolarized and roughly corresponds to the plateau phase of the ventricular action potential. The T wave represents ventricular repolarization and is longer in duration than depolarization. It is followed by a U wave. Its origin is not well understood. There are three popular hypotheses: (a) late repolarization of Purkinje fibers, (b) late repolarization in the left ventricle, and (c) after-potentials causing variations in normal potentials. In normal subjects, U waves have the same polarity as T waves.

The Dipole Theory for ECG

The ECG is electrical activity observed at the surface of the skin. The most widely followed theory that bridges the origin of cardiac activity and the ECG is the dipole theory [58]. The derivations presented in this chapter are based on the material in [61].

The development of this theory can be divided into three fundamental steps:

1. A model for cell membrane conduction of action potential– Cable Model.
2. A representation for the electrical activity propagated from one cell to its neighbor – Dipole Cardiac Vector.
3. A model for the transduction of this electrical activity from the heart to the surface of the torso – Derivation of ECG from Dipole vector.

Cable Model

The cable model is used to describe the transmembrane potential variations and the currents flowing both inside and outside the myocardial cell. Figure 8 illustrates the electrical circuit equivalent of the cell membrane.

\[V_o \] and \(i_o \) are the extracellular voltage and current at a given instance. \(V_i \) and \(i_i \) are the intracellular voltage and current at a given instance. M represents the lumped properties over a length \(\Delta x \). \(r_o \) and \(r_i \) are the resistances per unit length of the extracellular and intracellular fluids, respectively. \(i_m \) is the current flowing through the membrane per unit length. The TP is given by \(V_m = V_i - V_o \) along the membrane. Based on this model, we can arrive at a relationship between the rate of change of TP with respect to position and the ionic current.
\[i_t \Delta x = -\Delta V_i \]
\[\frac{\partial V_i}{\partial x} = -i_t \]
Similarly,
\[\frac{\partial v_i}{\partial x} = -i_{\text{rest}}

Using Kirchoff’s current law at one of the nodes, \(\Delta t_i = -i_m \Delta x \)
\[\frac{\partial v_m}{\partial x} = -i_m \]
\[\frac{\partial V_m}{\partial x} = \frac{\partial (V_i - V_o)}{\partial x} = \frac{\partial v_i}{\partial x} - \frac{\partial v_o}{\partial x} = -i_t (r_i + r_o) \]
The TP varies with time as well as spatially.
\[i(x, t) = -\frac{1}{(r_i+r_o)} \frac{\partial V_m(x, t)}{\partial x} \]
Substituting for membrane current from (14)
\[i_m(x, t) = \frac{1}{(r_i+r_o)} \frac{\partial^2 V_m(x, t)}{\partial x^2} \]

Dipole Cardiac Vector

At the interface between a depolarized myocardial cell and the neighboring resting cell, there is a transmembrane current that follows to negate the difference in TP between them. This ionic current flow can be depicted as shown in Figure 9.

On the assumption that the travelling action potential has a constant velocity (c) and shape within the myocardium, we have,
\[\frac{\partial V_m(\mathbf{x}, t)}{\partial x} = \frac{\partial V_m(x(t), t)}{\partial t} = \frac{1}{c} \frac{\partial V_m(x(t), t)}{\partial t} \]
\[i = -\frac{1}{(r_o+r_i)} \frac{1}{c} \frac{\partial V_m(x(t), t)}{\partial t} \]

This current flowing between a depolarized and a resting myocyte forms a current dipole. The vector associated with this dipole is the dipole moment as shown below in Figure 10.

\[\mathbf{d} \]
\[\int_0 \times dA \]

Derivation of ECG from Dipole Vector

According to the dipole theory, the potential difference measured across two points on the torso is the geometric projection of the cardiac vector on the line vector connecting the two points. The aim, therefore, is to derive the relationship between the Cardiac Dipole vector and the surface potentials at the level of the skin. For the sake of simplicity, the relation between the dipole vector and surface potential at the skin is derived for a single instant of time. By expressing the dipole moment as a function of time, a real time expression for ECG can be easily derived.

The following assumptions are made in the derivation:
1. The torso is a linear, isotropic, homogeneous, spherical conductor of radius \(R \) and conductivity \(\sigma \).
2. The heart’s activity is represented by the time varying Cardiac Dipole vector.

Within the spherical torso, linearity dictates,
\[\int = \sigma \vec{E} = -\sigma \nabla \varphi \]
\[\frac{\partial v}{\partial r} = 0 \]
From (26),
\[\nabla^2 \varphi = 0 \]
This is a Laplacian equation which is solved in spherical coordinates with the following boundary conditions,
1. No current is allowed to flow out of the body. Therefore, \(\frac{\partial \varphi}{\partial r} \bigg|_{r=R} = 0 \) at \(r = R \) (radius of torso)
2. Condition established in the dipole cardiac vector derivation. \(M_0 = \int_0 \times dA \times dl \)

The solution that satisfies the boundary conditions is written as a sum of two functions:
\[\varphi(r, \theta) = \varphi_1(r, \theta) + \varphi_2(r, \theta) \]
\[\varphi(r, \theta) = \frac{M_0}{4\pi\sigma R^2} \cot\theta \left[\frac{1}{r^2} + \frac{2r}{R^3} \right] \]

At the surface of the sphere i.e. the skin on the torso, \(r = R \)
\[\varphi(r, \theta) = \frac{3M_0}{4\pi\sigma R^2} \cot\theta \]

The Figure 11 (a) and (b) illustrate how the potential at the surface is calculated as a projection of the cardiac dipole vector.
The vector representation of (27) is,
\[\varphi_A = \vec{M} \cdot \vec{OA} \]
(28)

Substituting for \(\vec{M} \) from (21) and \(j_0 \) from (17),
\[\varphi_A = \iiint \left[\frac{1}{r_o + r_i} \frac{1}{A_{cr}} \frac{\partial^2 V_{ml}(x,y)}{\partial x^2} \cdot dA \right] \cdot \vec{OA} \]
(29)

Lead II refers to the measurement of potential difference between electrodes placed on the right arm and the left leg. Based on this result the ECG for lead II position is calculated as follows,
\[V_{II} = \varphi_{LL} - \varphi_{RA} \]
(30)
\[\varphi_{LL} = \vec{M} \cdot \vec{OLL} \]
(31)
\[\varphi_{RA} = \vec{M} \cdot \vec{ORA} \]
(32)
\[V_{II} = \vec{M} \cdot (\vec{OLL} - \vec{ORA}) \]
(33)

V. MONITORING AND DIAGNOSIS: NEUROLOGICAL SIGNAL MEASUREMENTS OF DIAGNOSTIC VALUE

A. Electroencephalogram (EEG) measurement

EEG is the recording of the electrical activity of the brain along the scalp region by measuring the fluctuation in the voltage induced by the ionic current flows originated from the neurons. EEG is normally measured by placing the electrodes over the skull at defined positions according to the international 10-20 system (Figure 12) [62]. The 10 and 20 refer to the distance between adjacent electrodes by dividing the transverse and median planes of the skull perimeters into 10% and 20% intervals. In the international 10-20 system, 19 electrodes are placed over the skull and 2 electrodes are placed on the ears as reference electrodes. The letters F,O,C,P,T in the 10-20 system of placement of electrodes stand for Frontal, Occipital, Central, Parietal, and Temporal respectively. The electrodes are placed according to the location of placement and the underlying cerebral cortex. The even numbers represent the right side of the hemisphere and odd numbers represent the left side of the hemisphere. There are two basic methods by which the electrodes are placed: monopolar and bipolar. In monopolar, one side of the amplifier is connected to the reference electrode, and in bipolar, amplifier is connected between the pair of electrodes. The electrical activity is acquired and amplified/filtered to record EEG waveform TABLE 1.

B. Electrooculogram (EOG) measurement

Electrooculogram is the measurement of the resting potential of the retina. EOG monitors the eye movements by detecting the dipolar current flowing from the cornea to the retina, which also indicates the angular displacement of the eye. Applications of EOG include saccadic movements, smooth pursuit movements, convergence/divergence to record and optokinetic nystagmus. Normally, the electrodes are placed around the eyes with a reference electrode on the forehead. The electrodes are placed on the temple for the lateral movement and the other electrodes are placed vertically, one above and the other below the eye (Figure 13) to measure vertical movement of the eyes [62].
C. Electromyography (EMG) measurement

EMG depends on the firing action potential of the numerous motors present in the muscles. The electrodes placed on the skin over the muscle detect the electrical activity of the muscles of the underlying tissues (Figure 13). It is difficult to correlate the waveform with the specific muscle from which it is generated but this difficulty can be alleviated by the proper placement of electrodes. The muscle fibers which are present near the electrodes will have a greater impact on the waveforms, whereas the muscles at a longer distance will have lesser impact with respect to signal strength. This dependence of the quality of EMG on the distance of muscles and electrodes is mainly caused due to the impedance between the tissues. Therefore, placing the electrodes at a long distance will provide varying and more generalized signals, and placing the electrodes at short intervals gives a signal which is more specific to the muscles over which the electrodes are placed. However, it becomes nearly impossible to identify the specific muscles generating the signal because of the interferences from noise and motion artifacts. The electrodes are generally placed in parallel with the dominant muscles, since it minimizes signal cancellation and maximizes the biofeedback sensitivity [63].

D. Neurological Signal Abnormalities

Symptoms ranging from structural, biochemical, or electrical abnormalities in the nervous system, especially brain and nerves, which denote abnormality, are termed as a neurological disorder. The two fields of medicine, neurology and neuropsychology, deal with most of the types of neurological disorders. These disorders may vary from loss of concentration to paralysis, where they are also classified into common and rare categories depending on the degree of impact [64]. They are one of the 10 leading causes of deaths in United States of America. They are followed by infectious diseases such as meningitis and tetanus. Equally prevalent are the degenerative neurological disorders such as Alzheimer’s disease and Parkinson’s disease [65]. A range of specific disorders can be identified and diagnosed with bio potential signals such as electroencephalography (EEG), electrooculography (EOG), and electromyography (EMG), (TABLE 2).

TABLE 2: Biopotential and Neurological disorders

<table>
<thead>
<tr>
<th>Biopotential (EEG, EOG, EMG)</th>
<th>Neurological Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>Tumors, Stroke, Epileptic seizures, Encephalopathy or delirium, Catatonia, Alzheimer’s, Parkinson’s</td>
</tr>
<tr>
<td>EOG</td>
<td>Clinical ophthalmology, Parkinson’s, Sleep disorders</td>
</tr>
<tr>
<td>EMG</td>
<td>Axillary nerve dysfunction, Centronuclear myopathy, Mononeuritis multiplex, Motor neuron disease, Neuromyotonia, Peripheral neuropathy</td>
</tr>
</tbody>
</table>

VI. MONITORING AND DIAGNOSIS: CARDIOLOGICAL SIGNAL MEASUREMENTS OF DIAGNOSTIC VALUE

A. Electrocardiography (ECG) Measurement

The Electrocardiogram (ECG) is a fundamental non-invasive method for monitoring the heart's electrical activity by placing electrodes on the skin. ECG provides multiple perspectives of the heart’s electrical activity simultaneously [66]. The setup can be a 3 lead system with electrodes placed at corners of the torso section of body (Figure 14) as a substitute for the extremities of the limbs (right arm, left arm, and left leg), thus forming an imaginary triangle known as Einthoven’s Triangle. They provide a limited view of electrical cardiac activity, but the polarity of these leads is useful for determining the direction of propagation of depolarizing pulse through the cardiac tissue known as the electrical axis. The setup can also be a 12 lead system (Figure 14), which uses 10 electrodes, 4 placed at the extremities of the limbs (arms and legs) and 6 placed on the chest. The 6 chest electrodes are called precordial leads that give perspective of electrical cardiac activity in a horizontal plane that is orthogonal to the electrical axis [67]. For chronic
disease management, out-of-hospital rehabilitation and diagnostics, such as event detection, require full time ECG recording on ambulatory patients. For the same, the 12 lead ECG setup can be simplified to a 5 electrode system known as the EASI system and simple mathematical transformations exist to derive the 12 lead ECG. These 5 electrodes are on the upper part of body along the sternum and midaxial region [68,69]. Hence, the ECG panel can be used as an image of the cardiac activity for non-invasive medical diagnosis.

Figure 14 Electrode placements for 3-lead and 12-lead ECG, signals from 12 Leads [77,79].

B. Electrical Impedance Tomography (EIT)

Trans Thoracic Impedance (TTI) is a technique used to measure the change in impedance across the thoracic cavity. It is a type of Electrical Impedance Tomography (ETI) technique. It is important for monitoring pulmonary function, trans-myocardial current, cardiac output, and over all fluid retention of the thoracic cavity. The latter is important in the monitoring of hypertensive patients.

The set up uses 4 electrodes placed in the sub-clavicle, sub-axillar, anterior, or posterior positions (Figure 15). A constant current is applied to 2 electrodes, and the resulting voltage is recorded across the other 2 electrodes. The electrode pairs are placed across the thoracic cavity from each other to capture change in conductivity due to ventilation of lungs or cardiac function. This system is also capable of acquiring an impedance image of the thoracic region by using electrode array (16 electrodes or more) placed all around the thoracic cavity. Each set of 4 electrodes acts as a perspective (angle) for scanning the bioimpedance.

Figure 15 Electrical Impedance Tomography (EIT) of thoracic cavity to lung function

The 4 electrode system includes the electrodes, a current driver (source), a voltage recording unit, and a phase-sensitive demodulator. The phase demodulator records voltage values while in phase with the current source and at a phase delay of 90° to extract resistance and reactance values of the bioimpedance. Applied current is 1/10th of the current threshold for causing any sensation on the skin. Input current frequency is kept around 50kHz. At this frequency, impedance characteristics of the tissue are similar to those at D.C. That is, the current travels in extracellular space but the electrode-skin impedance is much lower than that at D.C. Hence, there is less instrumentation error due to baseline noise and impedance mismatch. However, measurements taken across a frequency spectrum can help in rectifying any phase effects [70].

Early systems, such as the Sheffield Mark 1, used a single impedance measurement circuit and a multiplexer to link with the array of electrodes. More recent systems use devoted circuits for each electrodes set. While the former is portable but slow, the latter is fast but bulky. Two types of electrodes are commonly used for this system: silver-silver chloride gel electrodes and the conductive gel filled gold cup electrode.

In theory, the EIT system should be free of impedance at electrode-skin interface. In practice, skin preparation (abrasion) is used for reducing impedance at electrode-skin interface. Still, the system experiences change in impedance at the interface. During thoracic impedance monitoring for longer periods of time, the conductive gel may dry up and increase electrode-skin impedance. Dry textile based nanobiosensor electrodes have contact impedance less than that of the plain dry electrodes; hence, they can be a good alternative to gel based electrodes for long term monitoring.

C. Cardiological Signal Abnormalities

Cardiovascular disorders can be diagnosed by identifying ECG abnormalities and computing their frequency of occurrence. This is accomplished by following diagnostic criteria that are mentioned in TABLE 3.

Apart from the well-defined diagnostic criteria mentioned above, there are a few approaches that are being researched to eventually be included in standard clinical practice. Ventricular Arrhythmias are abnormalities in the cardiac conduction physiology or anatomy originating in the Ventricles of the heart. From a cardiac patient care perspective, they are the causes of immediate concern because they can lead to fatal outcomes like Sudden Cardiac Arrest (SCA) leading to Sudden Cardiac Death (SCD) and Acute Myocardial Infarction (AMI). The T-wave, QT interval, and
the ST segment of the ECG are known to be indicative of the repolarization of the ventricles of the heart during a cardiac cycle. Consequently, among ECG analysis criteria, T-wave alternans (TWA) and T wave inversion (TWI) have gained significant research interest as means to predict the likelihood of Ventricular Arrhythmias.

T-wave Alternans (TWA)— T-wave alternans is the beat-to-beat variation of T wave morphology and amplitude. Several clinical studies have tried to determine the significance of using TWA analysis to detect abnormalities that may lead to Ventricular Arrhythmias, as well as establish metrics to perform risk stratification for cardiovascular patients with prior cardiac episodes. The statistical significance of TWA in predicting ventricular arrhythmias has been established in patients across several diagnoses [71]. Studies have also shown the significance of the predictive value of TWA analysis in post myocardial infarction patients [72], risk of SCD [73], congestive heart failure [74], ischemic cardiomyopathy [75], and Chagas disease [76]. Figure 16 shows an example of TWA analysis performed in [77].

T-wave Inversion (TWI) - TWI is the reversal in the polarity of the normal T wave which is upright in most ECG leads. TWI has been associated with cardiovascular as well as cerebrovascular abnormalities [78]. TWI coupled with QT interval changes and dialysate Calcium concentrations have also been associated with an increased risk of SCD among patients who have recently undergone Hemodialysis [78-81]. Moreover, TWI has gained significant research interest because of its high incidence in young athletes [82] and soldiers [83]. TWI is a known diagnostic criterion for Hypertrophic Cardiomyopathy (HCM). HCM is known to significantly increase a patient’s susceptibility to a SCA leading to SCD when the patient is exposed to exertion through cardiovascular exercises. Consequently, T-wave characteristics are an important criterion used in prescreening for athletes in sports and soldiers in military recruitment. As an example Figure 17 shows the asymptomatic TWI in a Football referee [82].

QT interval dispersion: Sudden cardiac death and fatal arrhythmia have been found as major causes of death among dialysis patients. According to United States Renal Data System (USRDS) database, the mortality rate among dialysis patients (hemodialysis or peritoneal dialysis) is 230 per 1000. SCD and arrhythmias account for 25% of these deaths[79]. Dialysis patients who have pre-existing heart condition(s) are at increased risk of sudden death due to disturbance in electrolyte metabolism. QT dispersion is defined as the difference between the longest and shortest QT intervals extracted from ECG signals from single lead or multiple leads up to the complete set of 12 leads. A heart rate corrected QT interval is given by Bazett’s formula

\[QT_c = \frac{QT_{\text{max}} - QT_{\text{min}}}{\sqrt{RR_{\text{interval}}}} \]

QT dispersion reflects the differences in heart dipole vector (previous section) projects and abnormalities of T-wave loop morphology. This makes it a direct measure of regional heterogeneity of myocardial repolarization, which has the predisposition to re-entry arrhythmias [81]. It is known that potassium, calcium, magnesium, and metabolic acidosis are important factors for the overall electrical stability of the myocardium to ensure normal cellular excitability, impulse propagation, and regular ventricular recovery. Large amounts of or rapid removal of potassium, low calcium dialysate, intracellular magnesium overload, iron overload, and rapid bicarbonate gain (metabolic acidosis) are the factors that increase QT dispersion in dialysis patients [81].

Figure 16 TWA Computation (A) Beats are aligned by QRS complexes. At each successive time point- in the aligned T-waves (arrows) (B) Beat-to-beat oscillations reflect alternans at each time point (C) Spectral Analysis applies fast Fourier transformation to yield a power spectrum in which alternans is the peak at the frequency of half the heart rate (0.5 cycles/beat). (D) MMA analysis uses a nonlinear filter to quantify the maximum difference between the means of ‘even’ versus ‘odd’ beats in an alternating sequence. Figure reproduced with permission, from [89].
Figure 17 T-wave inversion in leads I, II, III, aVF, V2–V6 and ST-segment depression in leads II, aVF, V4–V6 in a 31-year-old asymptomatic professional soccer referee during cardiopulmonary exercise. The subject had no family history of SCD. Reproduced with permission, from [94]

<table>
<thead>
<tr>
<th>ECG wave characteristic</th>
<th>Abnormal Morphology</th>
<th>Additional Criteria</th>
<th>Lead of interest</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Wave</td>
<td>Inverted</td>
<td>II, III and aVF but upright in aVR</td>
<td>II, III, aVF and aVR</td>
<td>Atrioventricular Junctional or ectopic atrial rhythm.</td>
</tr>
<tr>
<td></td>
<td>Absent</td>
<td>All leads</td>
<td></td>
<td>Sinoatrial Block and Atrioventricular junctional rhythms.</td>
</tr>
<tr>
<td></td>
<td>Wave duration ≥ 0.12 seconds</td>
<td>II, III and aVF</td>
<td></td>
<td>Left atrial enlargement</td>
</tr>
<tr>
<td></td>
<td>Elevated P wave amplitude</td>
<td>Positive amplitude ≥ 0.25mV</td>
<td>V1, V2</td>
<td>Right atrial enlargement. Also consider right ventricular hypertrophy, cor pulmonale, pulmonary hypertension, pulmonary and bicuspid stenosis.</td>
</tr>
<tr>
<td></td>
<td>Notched (has 2 peaks)</td>
<td>Distance between peaks of > 0.04 seconds</td>
<td>II, III and aVF</td>
<td>Left atrial enlargement</td>
</tr>
<tr>
<td></td>
<td>Biphasic</td>
<td>Positive amplitude ≥ 0.15mV and negative amplitude ≥ 0.1mV</td>
<td>V1</td>
<td>Biattrial Enlargement</td>
</tr>
<tr>
<td>ST segment</td>
<td>Elevation</td>
<td>Marked ST elevation in Leads II, III and aVF accompanied by marked reciprocal depression in Leads I and aVL</td>
<td>I, II, III, aVL and aVF</td>
<td>Acute inferior Myocardial Infarction (MI)</td>
</tr>
<tr>
<td></td>
<td>Marked ST Elevation in V1-V5</td>
<td>V1- V5</td>
<td>Extensive acute anterior MI</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>ST depression ≥ 0.1mV and Creatinine Kinase MB test positive</td>
<td>2 or more contiguous leads</td>
<td>Non-ST elevation MI</td>
<td></td>
</tr>
<tr>
<td>ST depression ≥ 0.1mV and Creatinine Kinase MB test negative</td>
<td>2 or more contiguous leads</td>
<td>Ischemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration > 0.0 4 seconds, Amplitude ≥ 0.3mV</td>
<td>Lead III and aVL amplitude > 0.7mV, Lead I amplitude > 0.15mV</td>
<td>Inferior MI, possible - hypertrophic Cardiomyopathy, Wolff-Parkinson-White Syndrome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1- V4</td>
<td>Anterior MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V5-V6</td>
<td>Lateral MI, Hypertrophic Cardiomyopathy.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, aVL, V5, V6</td>
<td>Anterolateral MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage amplitude criteria</td>
<td>< 0mV or > 0.6mV on V1, ≤ 0.02mV in V2, < 0.1mV in V3</td>
<td>Anterior MI, Left Ventricular Hypertrophy, Left Bundle Branch Block if QRS duration > 0.12 seconds, Emphysema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1-V6</td>
<td>Anterior MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, aVL, V3- V6</td>
<td>Ischemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Inversion > 0.5mV</td>
<td>V2 - V5</td>
<td>Ischemia or Posterior MI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, II, aVF and aVR</td>
<td>Ischemia or Posterior MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Several Leads</td>
<td>Cardiomyopathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor inversion < 0.5mV</td>
<td>Non-specific - maybe Ischemia, Electrolyte depletion, Alcohol abuse, cardiomyopathy, Myocarditis or others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A secondary R wave in V1 or V2, Slurred S wave in V5, V6 and Lead I with duration > 40ms. S wave is longer in duration than the preceding R wave in Leads V6 and I</td>
<td>I, V1, V2, V5, V6</td>
<td>Right Bundle Branch Block (RBBB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broad Monophasic R wave notched or slurred in Lead I, aVL, V5 or V6, Late intrinsocoid deflection in Leads I, V5, V6 greater than 0.05 seconds.</td>
<td>I, aVL, V5, V6</td>
<td>Left Bundle Branch Block (LBBB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 0.5mV in Leads I,II, III, aVF, aVR, aVL or ≤1mV in V1- V6</td>
<td>All Leads</td>
<td>Obesity, Pericardial Effusion, Constrictive pericarditis, Myxedema, Amyloidosis, pleural effusion, Chronic Obstructive Pulmonary Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration > 0.2 seconds</td>
<td>I, V1</td>
<td>First degree atrioventricular block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration < 0.11 seconds</td>
<td>I, V1</td>
<td>Wolff-Parkinson-White Syndrome, Atrioventricular Junctional Rhythm, Lown-Ganong-Levine syndrome</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VII. MONITORING SYSTEMS

A. Commercially available monitoring and recording systems – Neurological and cardiovascular

All ECG, EEG, EOG, and EMG monitoring systems in market are mostly defined by the type of signal acquisition and storage system they use. Recording and acquisition of signals is done by a multichannel desktop recording, display, and monitoring system, or it's handheld version, or portable data logging device Holter monitor. A majority of systems can be classified into these two categories. Modern multichannel desktop recording systems can connect to the physician’s office from a remote location with the help of Ethernet connectivity or by wireless network to a nearby workstation for easier workflow. Further advancement has allowed inclusion of automatic triggers that can alert the nursing staff in the hospital but it is still confined to the hospital bed. The Holter monitoring system is the only commercially available multiple lead ambulatory measurement system, and it performs only data logging. A list of noteworthy commercialized ECG recording technologies has been listed in TABLE 4.

In recent years, these monitors have been equipped with event recording functionality that allows for automatic or manual logging of the time of the event onset, while continuously recording the ECG signals. In addition to this, the Holter can be interfaced with wireless electronics to achieve ambulatory monitoring. This measure has challenges such as shorter battery life and large data volume for transmission.

Most of the EEG recordings for diagnostic purposes are performed in hospitals or other clinical settings. Commercially available ambulatory or out of hospital recording platforms for EEG, EOG, and EMG are primarily intended for sleep studies that need to be performed at home. A brief list is provided in TABLE 5.
From survey of existing monitoring and diagnostics indicates that there are a few systems for ECG, EEG, EOG, and EMG, which facilitate at home and ambulatory monitoring. With the help of post processing of recorded data and/or real time processing of wirelessly transmitted data at a centralized location, it is possible to perform diagnostics. However, these systems make ambulatory monitoring an added chore rather than a fully automatic process which would be possible with RPM systems. The electrodes need to be replaced after the conductive gel dries up or prolonged exposure to sweat. Applying these electrodes requires the help of a clinical technician and dry electrodes require mechanical appendage such as straps to keep them in place. In addition to this, ECG systems have wire-outs from the electrodes to the recording equipment. Unless tucked and taped as is the case of Holter monitor, the wires limit the movement of patient.

The systems listed in this section do not use or reluctantly use wireless technology. This means that the data needs to be brought to the hospital for post processing and administration of therapy. These intermittent treatments are brief and expensive supervised episodes[84,85]. Therefore, well defined wireless communication is required in wearable monitoring systems to provide continuous and remote healthcare in an affordable way.

B. Wireless Health Monitoring: State-of-the-art

The textile based nano-biosensors can be combined with flexible wireless sensors to be incorporated in the garment of daily use, e.g. a vest, brassiere, head band, or skull-cap. The sensors can combine with a wireless health diagnostic system made of embedded wireless networking devices, which can communicate with a smart phone. This enables the connection of nanosensors to cloud computing, via smart phone, to fundamentally advance remote cyber-enabled health care.

Table 4: Commercial ECG recording platforms

<table>
<thead>
<tr>
<th>Manuactures</th>
<th>Product Name</th>
<th>No. of channels</th>
<th>Storage</th>
<th>Wireless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philips /Respironics</td>
<td>Alice PDx</td>
<td>21 channel with optional ECG and EEG</td>
<td>1GB SD card</td>
<td>No</td>
</tr>
<tr>
<td>Embla</td>
<td>Embleta X100</td>
<td>12-channel with X100 proxy</td>
<td>128MB internal memory</td>
<td>No</td>
</tr>
<tr>
<td>Compumedics</td>
<td>Somte PSG</td>
<td>16-channel</td>
<td>2GB Compact Flash</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>Compumedics</td>
<td>Siesta</td>
<td>32-amplified channel</td>
<td>Compact Flash</td>
<td>Siesta's Ethernet radio link</td>
</tr>
<tr>
<td>Cleveland Medical</td>
<td>Sleep Scout</td>
<td>9-channel</td>
<td>SD card</td>
<td>2.4-2.484 GHz</td>
</tr>
<tr>
<td>ResMed</td>
<td>ApneaLink Plus</td>
<td>4-channel</td>
<td>15MB internal memory</td>
<td>No</td>
</tr>
<tr>
<td>CareFusion</td>
<td>Nox-T3</td>
<td>14-channel</td>
<td>1GB SD card</td>
<td>No</td>
</tr>
</tbody>
</table>

B1 Wireless Communication Implementations

Wireless devices follow standard communication protocols to interface and connect to each other. The established communication standards are IEEE 802.11 (Wireless Local Area Network (WLAN), IEEE 802.15.4 from which ZigBee™ is derived, and IEEE 802.15.6 which is Bluetooth™ and Custom radio frequency (RF) transceivers. The choice between wireless protocols for development of wearable wireless health monitoring platform largely deals with complexity of connection, power consumption, and scalability of the application from single to a multiple user system.

WLAN, Wi-Fi based systems and Wi-Fi-Bluetooth integrated systems have been demonstrated [86], but Wi-Fi consumes as much as four times the power consumed by Bluetooth and is hence not an energy efficient solution. ZigBee™ is an attractive protocol as far as connection stability, link layer retransmit in case of data loss, and large range of network configurations are concerned, but the data rate is much lower than Bluetooth™. Moreover, ZigBee™ is not available on standard portable devices. Custom RF transceivers do not have limitations on data rate and consume less power than Bluetooth™ but additional hardware is...
necessary to connect to standard devices. Thus, Bluetooth™ is ideally suited for pervasive wireless healthcare devices because of the new ultra-low power connection profiles, high data rates of up to ~3 Megabits per second (Mbps) and standard availability on all portable electronic devices.

The ultimate goal for all communication architectures is to provide a means of storing the large quantity of real-time patient healthcare data in a remote server and provide emergency warning mechanisms wherein abnormal data is automatically identified and a warning is sent to hospitals, physicians, and the patient as well. Based on these requirements, the solutions proposed thus far have been:

1. Custom RF transceiver sends data to a PC with a plug in RF transceiver, and the PC processes and uploads the data [87].
2. ZigBee™ based approach which is similar to custom RF in that connectivity is to a PC or a customized receiver module that has a Wi-Fi-ZigBee™ combination chip that directly uploads to a server [35]. This has the potential to scale up in setting such as home and local area network (LAN) hotspots.
3. Bluetooth™ based smart phone relay with local signal processing and data relay through Global System for Mobile Communication (GSM)/General Packet Radio Service (GPRS) [88]. This solution truly facilitates wearable health monitoring systems application.

B2 Sensor to Wireless Module Connectivity

The integration of sensors and the signal conditioning and wireless modules in wearable platforms can be achieved through three strategies.

1. Connecting the sensors through wires to a small module that incorporates signal conditioning, amplification circuits, as well as a wireless transceiver.
2. Connecting each sensor to a small wireless module that acts as an independent node – Body Area Network (BAN)
3. Integration of various sensors on a garment and using conductive threads and yarn to carry power and signals from the sensors to a small signal conditioning and wireless transceiver module.

Wired

This is the first generation of portable healthcare devices in which systems for POC monitoring consisted of wired sensors that the patient needed to mount manually (Figure 18).

Complete health monitoring needs multiple sensors for bioelectric signals like electrocardiogram (ECG), Electromyogram (EMG), Electroencephalogram (EEG), Electrooculogram (EOG), light absorption based sensors for pulse oximetry, pressure flow sensors for air flow measurement, and strain sensors for respiration effort measurement. Each sensor has to be wired through regular insulated wire or shielded wires in case of biopotential signals. The wireless communication module uses custom data transmission hardware and software that did not easily integrate into a patient’s quotidian life—an individual had to carry a special device for data collection. This approach is not user-friendly. Although a significant improvement in terms of portability is achieved, the sensors used in a majority of these systems are not wearable. Figure 18 shows a schematic of these wired sensors.

Body Area Network (BAN) Concept for Healthcare Devices

BANs a network of independent wireless nodes that span the personal space of a user (Figure 19). Various wireless protocols have been used to implement BAN. The state of the art standards in BAN in wearable sensor systems is discussed in detail in [89]. The ultimate objective is to have independent sensors for physiological signals like Electrocardiogram (ECG), Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG), pulse rate, blood oxygen saturation (Pulse Oximetry and Photoplethysmography), temperature, and respiration that have wireless transmitters sending data to a single receiving station which may be a Personal Digital Assistant (PDA), a tablet Personal Computer (PC), a PC, a smartphone, or a custom receiver unit. The various wireless communication protocols used are Bluetooth™, ZigBee, and custom communication protocols for low power transmission of data. The truest embodiment of this concept will have all body worn sensors (slaves) communicating with a single receiver unit (the master) and transmitting time synchronized data in real-time. Figure 20 presents a schematic of the concept.
VIII. NEUROLOGICAL DISORDER MONITORING BY WEARABLE WIRELESS NANO-BIO-TEXTILE SENSORS

This section presents textile based wearable nano-biosensor systems that can measure neurological signals and identify anomalies for diagnosis of targeted neurological disorders. These intended applications include chronic disorder monitoring, monitoring for safety and rehabilitation, and for improved quality of life.

A range of specific disorders can be identified and diagnosed with bio potential signals, such as electroencephalography (EEG), electrooculography (EOG), and electromyography (EMG), because of their rooted significance and origin. By measuring and analyzing these bio potential signals, certain neurological disorders can be detected or diagnosed. Several applications, such as sleep disorder, drowsiness, and brain machine interface, based on these bio potential signals detected by textile based analog nano sensors are described in the following sections.

A. Wireless Telemedicine System for Diagnosing Sleep Disorders – The Home Sleep Test (HST)

Sleep disorders are related to sleep patterns and characterized by disturbance in the amount, quality, or timing of sleep. There are about 88 recognized sleep disorders. According to the International Classification of Sleep Disorders, the sleep disorders are classified as dyssomnias, parasomnias, sleep disorders associated with other disorders, and proposed sleep disorders [64]. According to National Institutes of Health (NIH), 50 to 70 million Americans suffer from sleep disorders and sleep deprivation [90]. The short-term effects of sleep disorder are morning headaches, excessive daytime sleepiness, short-term memory loss, and depression. The cumulative long-term effects are associated with heart failure, stroke/transient ischemic attack, type 2 diabetes, and hypertension [91]. Apart from chronic physical risks, undiagnosed sleep disorders lead to serious consequences from a social perspective. Undiagnosed sleep disorders impose over $22 billion in unnecessary health care costs.

Polysomnography (PSG) is a standard approach to the monitoring of the sleep patterns. These recorded physiological signals are scored over the epoch by a sleep specialist or an auto-scoring program into one of six stages (TABLE 6) – wake, rapid eye movement (REM) and non-REM stages (NREM). There are four types of sleep study devices according to the Center for Medicare & Medicaid Services (CMS) and the American Academy of Sleep Medicine (AASM). Type I PSG measures almost all kinds of physiological signals with around 20 sensors and is performed by a sleep technologist in a sleep lab. Thus, it provides accurate diagnosis. The cost of performing a PSG ranges from $1,000 to $5,000, and the waiting time is from a few weeks to more than a year because of the currently insufficient capacity of sleep laboratories [92]. In addition to that, the patient has to spend a night at the sleep laboratory, which can be an inconvenience that may even affect the results of the test.

The Home Sleep Test (HST) is performed at home in the comfort of the patient’s own home and there are no long waiting lists to schedule the exam. The HST records and saves the sleep data to the internal or external memory. Despite its
convenience and cost-effectiveness, it has lack of real-time monitoring and limited amount of physiological information. Recently introduced wireless HST devices save the sleep data to a local server wirelessly. Most of them adopt Bluetooth, ZigBee, or their own protocols as a wireless communication method over industrial, scientific and medical (ISM) band. The wireless communication is used to build wireless personnel area network (WPAN) or wireless body area network (WBAN) to save or monitor the sleep data. However, the wireless network area is limited to the personal area or body area. The real-time monitoring of the physiological signals at remote locations for sleep disorders can be achieved by combining two wireless communication standards or using the mobile communication network. The concept of combining two wireless communication standards is extending WPAN/WBAN to WAN. Therefore, one wireless communication standard is for building WPAN/WAN and the other wireless standards are for WAN.

The sections hereafter describe the wireless HST devices which support the real-time monitoring of sleep data at remote places by using combination of the wireless communication standards.

System Description

The system mainly consists of sensors, a wireless sensor electronic unit, a wireless receiver unit, and a monitoring unit. The system measures 5 biopotential signals to evaluate the sleep stages: 2x EOG, 1x EMG, and 2x EEG. The receiver unit adopts two wireless communication standards—Wi-Fi and Zigbee. The combination of two wireless standards in the receiver unit allows us to build WPAN and extend the WPAN to WLAN/WAN. The sensor electronic unit sends the sensed 5-channel signals 2x EOG, 1x EMG, and 2x EEG to the receiver unit through a Zigbee network. The receiver unit then retransmits to the monitoring unit or remote server through the Wi-Fi network. Figure 21 shows the data flow of the system [35].

Dry electrodes, nanostructured textile based electrodes, or gold nanowire electrodes can be used instead of conductive gel to overcome the drawbacks of wet silver-silver chloride electrodes as mentioned previously, i.e. Figure 22 shows both the dry electrodes. The main functions of the wireless sensor electronic unit are data acquisition, data processing, data flow management, and data transmission. The wireless sensor electronic unit consists of amplifier module, data acquisition/process module, and Zigbee wireless module.

The raw physiological signals from the sensors are very weak, ranging from micro-volts to milli-volts, and contaminated by noises, especially 50/60 Hz power line interference. Therefore, the signals need to be amplified and filtered to improve the signal to noise ratio. The biopotential signals for sleep studies are differential signals. The body impedance and contact impedance between skin and the electrodes might vary under different skin conditions leading to impedance mismatches. Therefore, an amplifier should have high common mode rejection ratio (CMRR) and high input impedance to maintain signal integrity. The amplifier module has 5-channel for 2x EOG, 1x EMG, and 2x EEG. The gain and bandwidth of each channel was tuned according to the AASM manual [93]. The amplified signals are digitized using an analog to digital converter (ADC) on the microprocessor.

Finally, the signals are transmitted to the receiver unit by Zigbee module. The output of the ADC is transferred to the ZigBee module through Universal Asynchronous Receive/Transmit (UART) interface. The data from the microprocessor are transmitted to the wireless receiver unit through Zigbee. The data received by the receiver unit is reconstituted as packets with sequential hex code including node number, sampling rate, the number of channel, and the data according to the defined communication protocol. These packets are saved in the data buffer temporarily and transmitted when a data request is received from a PC or a remote server. ZigBee interface routinely checks the wireless connection between the sensor electronic unit and the receiver unit and then transmits the sleep data to the receiver unit. This is done to ensure recovery from lost wireless connections. The wireless sensor electronic unit uses a 3.7V poly lithium battery as a power supply (Figure 23).
While the function of the sensor electronic unit is to build the wireless personnel area network with ZigBee, the role of the receiver unit is to extend the ZigBee network to the wireless local area network with Wi-Fi. The sleep data needs to be monitored at remote places. Therefore, the network should be extended to use Internet through Wi-Fi because ZigBee is not as prevalent as Wi-Fi. The processor board in the receiver unit consists of two wireless modules, the ZigBee and Wi-Fi module, a 16 MB SDRAM as a buffer for sensor data, a 64 MB NAND Flash memory for storage of programs, a 32-bit microcontroller, and an Ethernet controller. The receiver includes the ZigBee and Wi-Fi module management and the server management based on TCP/IP [35]. Figure 23 shows the block diagram and image of the wireless receiver unit, and Figure 24 shows the data flow in the wireless receiver.

Two electrodes were placed on the left lower and right upper side of the eyes to measure 2-channel EOG. One of electrodes was placed on the chin to measure EMG and to detect grinding of teeth or mouth movement. The last two electrodes were placed on C3 and O2 position on the scalp according to the international 10-20 system. The reference electrode to measure the differential biopotential signals was placed on the left ear lobe. Figure 25 shows an image of a subject under sleep study with the proposed system and the GUI of the monitoring utility program developed using MATLAB (Mathworks, Inc, Natick, MA, USA).

Figure 26 shows the measured and recorded biopotential signals using this system. In case of EOG, five different types of eye motions (blinking, left, right, up, and down) movement of eyeballs can be detected to emulate REM and wakeful sleep stage. The left and right EOGs show opposite polarity of slope due to the placement of the electrodes over the reference electrode. EMG reflects movement of the chin. The EEG acquisition performance can be verified by discerning between beta waves and alpha waves. Beta waves are associated with normal waking consciousness and Alpha waves with wakeful relaxation with eyes closed. By opening and closing eyes alternately, the changes of brain waves can be observed. EEGs from C3 and O2 positions show that alpha waves are dominant when eyes are closed. EEG from position O2 shows stronger alpha waves than from position C3 even though both the channels of the amplifier are set to the same gain. It verifies that the alpha waves predominantly originate from the occipital lobe during wakeful relaxation with closed eyes.
Figure 26 Monitored EOG, EMG, EEG from the wireless telemedicine system for sleep study

In a case study on a human subject from 10 pm to 4 am, 5-channel signals were monitored and recorded in real-time [35]. The EEG signals are plotted in Figures 27-29. Based on the criteria specified in TABLE 6, transition between sleep stages can be seen in the EEG data from C3 and O2. This shows that a wireless telemedicine system for diagnosing sleep disorders can address the need for the efficient extension of network to provide remote monitoring in real-time. The dry electrodes and a scalable WPAN-WLAN wireless technology will foster more convenient and accurate diagnosis of sleep disorders.

B. Drowsiness monitoring: A textile based nano-biosensor system head band with GSM

Wireless wearable textile based nano-biosensor systems can also be useful in improving safety. This application addresses a condition that interferes with human performance and can become an occupational hazard. Drowsiness is defined as the onset of sleep or the precursor for sleep. For instance, the transition state from wakefulness to sleep under undesired circumstances (in most cases) is defined as drowsiness. It can also be referred to as an intervening process in concentration and attention. Additionally, fatigue or drowsiness is also referred to as the psychological disability which results from various sources and origins [94]. Drowsy driving is one of the third most common reasons for road accidents. National Highway Traffic Safety Administration (NHTSA) estimates that approximately 25% of police-reported crashes involve some form of driving inattention—the driver is distracted, asleep or fatigued, or otherwise "lost in thought" [95,96]. The 100-Car Naturalistic Study [97] recorded the activities of 241 drivers over the course of 12 -13 months and found that 78% of the crashes and 65% of near crashes had one form of inattention as a contributing factor.

Monitoring of people, like security personnel, drivers, shift based workers, and custodial workers, who need to stay awake during the normal sleep cycle and prevention of people from falling asleep at the wheel to avert accidents requires drowsiness monitoring systems. Psychomotor Vigilance Test (PVT) [98], Epworth Sleepiness Scale, Maintenance of Wakefulness Test (MWT), Karolinska Sleepiness Scale (KSS), video monitoring, subjective report, and behavioral approaches are some of the tests performed to assess the quality of sleep from which an inference can be derived about attentiveness during a task [99].
Figure 27 This epoch illustrates the beginning of transition from Stage 1 to Stage 2. Vertex sharp waves are very prominent. In the beginning of the epoch, theta and alpha waves are dominant. In the middle of the epoch, there is a K complex. End of the epoch, delta waves less than 2 Hz are shown.

Figure 28 This epoch illustrates the Stage 3. Acceptable high amplitude, slow wave activity occupies between 20% and 50%.

Figure 29 This epoch illustrates a transition between Stage 2 and Stage REM. In the beginning of the epoch, there is sleep spindle followed by a K complex. Following the K complex are saw-tooth waves which herald the appearance of REM. The last half of epoch shows relatively low voltage, mixed frequency.
These systems rely more on the bio potential signal approaches to discriminate sleepiness and wakefulness. Primarily, bio potentials like ECG, EOG, and EMG are collected through the electrodes by establishing a skin-electrode contact. Methods like sample entropy and phase synchronization are used in this process of discriminating sleep/wakefulness. However, a real time and accurate monitoring system to detect drowsiness and classify sleepiness/wakefulness or drowsiness/alertness becomes highly essential for continuous monitoring if the system has to avert road collisions [100-102].

Considering the preceding parameters as the factors of a reliable and a real time monitoring unit, a flexible headband equipped with sensors and GSM wireless transmitter that can communicate with a receiver at a remote location was built (Figure 30). The textile based nano-biosensor is placed in such a way that it is in contact with the forehead for monitoring frontal cortex of the brain. The sensor was designed to detect raw biopotential signal, which is a combination of EEG and EOG [100]. The amplifier and A/D converter circuit feeds the digitized signal to a GSM module, which can send data to a remote server for real time monitoring and detection of a person’s level of drowsiness. The usage of the GSM module provides an advantage over the communication distance as it covers longer distances as compared to Bluetooth and ZigBee. This attribute is important in application for personnel with high risk or field jobs.

This system correlates the EEG and EOG signals to facilitate interlinking of eye blinks and the discrimination of alpha and beta waves. In the EEG signal, alpha wave dominance is present when a person is relaxed and beta waves are dominant when the person is attentive. Similarly, an assumption that a person falling asleep will have a slower eye blink rate than an attentive or a normal person is also made. Subsequently, the pace at which the eyes blink are measured, where the difference in pace and waveform during slow and normal blinks are analyzed. Correlation of all these features extracted from EEG and EOG is finally used to estimate the condition of the person. [100]

The back end of the module consists of software at the receiver end which is programmed to extract the features from the EEG and EOG signals. Specific features from which sleep can be detected are extracted in the software and it pops out a warning signal when the driver falls asleep. The rate of eye blinks from the EOG signal and the peak values from Autoregressive Power Spectral Density (AR-PSD) of the brain signal in the alpha frequency band are correlated to estimate the condition of the person. The receiver side software is programmed to perform feature extraction, AR-PSD of the signal, and improve the signal quality to adapt the processing strategy and parametric analysis. These separate results are then correlated in the main server program of the software according to the decision criteria, which is based on the initial set of experiments [100].

Initial experiments, as shown in Figure 31, are conducted to get ARPSD values fixing the decision criteria. It shows that the measured values clearly indicate that closed eyes have the highest value and open eyes has the lowest value. Similarly, Figure 32 shows the average values obtained over a series of test cycles.

Upon comparison of test results of the flexible head band system on a real time driving simulator and PVT (TABLE 7), it was observed that an increase in the number of hours of sleep drastically worsened the reaction time of each subject in any given cycle of PVT test. Similarly, the number of times drowsiness was detected in the period of the PVT test proves...
that the flexible head band system detects more number of occurrences of drowsiness as the number of hours of sleep deprivation increased. Therefore, a correlation between the PVT and flexible head band system was derived. Hence, it was evident that the flexible headband system equipped with textile based nano sensor provided effective drowsiness and alertness discrimination. It is also evident from the analysis that the number of drowsiness occurrences increased when the reaction time of the subject increased.

TABLE 7: Comparison of test results of the flexible head band system and PVT [110]

<table>
<thead>
<tr>
<th>Condition of the test subject</th>
<th>Observation</th>
<th>Test 1</th>
<th>Test 2</th>
<th>% of drowsiness calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Head band: No. of times drowsiness was detected out of 24 PVT reaction time</td>
<td>2</td>
<td>2</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>409 m sec</td>
<td>397 m sec</td>
<td></td>
</tr>
<tr>
<td>20 hours sleep deprived</td>
<td>Head band: No. of times drowsiness was detected out of 24 PVT reaction time</td>
<td>12</td>
<td>14</td>
<td>54.16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>533 m sec</td>
<td>578 m sec</td>
<td></td>
</tr>
<tr>
<td>28 hours sleep deprived</td>
<td>Head band: No. of times drowsiness was detected out of 24 PVT reaction time</td>
<td>21</td>
<td>19</td>
<td>83.25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>675 m sec</td>
<td>654 m sec</td>
<td></td>
</tr>
</tbody>
</table>

C. Wearable Brain Machine Interface

Wearable nano-biosensor systems can be used in potential applications for interfacing human mind with devices to operate them with thought and other neurological signals as cues. A brain machine interface (BMI) is a communication system that translates human’s thought into signals to control devices such as a computer application or a neuroprosthesis [103]. A BMI enables the brain to communicate with the external world by deciphering the brain’s activity. Hence, the assistive devices or systems using a BMI improve the quality of life in disabled people. In addition, a BMI has been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, firefighting, etc.

Previous research projects have demonstrated the feasibility of BMI with the invasive method by implanting the intracranial electrodes in the motor cortex of monkeys [104-108]. Though an invasive BMI can use good quality of brain signals, it is expensive and the implanting surgery may lead to undesirable side effects. A noninvasive BMI using electroencephalogram (EEG) signals are preferable for humans. EEG signals represent the electrical activity of millions of neurons in the brain. EEG has various properties and it can be used as a basis for a BMI: rhythmic brain activity, event-related potentials (EPRs), event-related desynchronization (ERD), and event-related synchronization (ERS) [109]. Different rhythmic brain activities are shown depending on the level of consciousness. The brain waves are classified according to the frequency band: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz), and Gamma (30-100 Hz). These rhythms are affected by different actions and thoughts, for example the thinking of movement attenuates or changes a typical brain rhythm. The fact that the thoughts affect the brain rhythms connotes the rhythmic brain activities that can be used for the BMI.

In general, implementation of a BMI based on EEG signals requires measurement of EEG, preprocessing, feature extraction, classification, and device control. To measure EEG signals, textile based nano-biosensor electrodes are placed on right places, typically according to the international 10-20 system. The preprocessing includes amplification, filtration, and A/D conversion. In the feature extraction stage, certain features can be extracted from the preprocessed and digitized EEG signals in frequency or time domain. The extracted features are the input of the classifier. The classifier can calculate the probabilities for the input belonging to each class. The signals are simply classified by threshold detection by the classifier. The output of the classifier is the input for the device control. The device control transforms the classification to a particular action of the device.

The wearable wireless brain-machine interface, shown in Figure 33, was designed to control a robot wirelessly [110, 111]. The BMI controls the movement of the robot based on EEG and EOG signals. The EEG and EOG signals are captured with textile based nano-biosensor electrodes attached to a headband at positions across the forehead. This electrode placement is not a conventional placement meant for Electrooculogram (EOG) measurements. It was chosen because the signal response to the left and right movement of the eyes was strong enough to use as a command signal. The classified rhythmic brain waves are used to control the acceleration and deceleration or stopping of the robot by setting the threshold. The classified EOG signals from the left and right movements of eye balls control the left and right direction changes of the robot.

The wireless transmitter module consists of a high gain biopotential amplifier to enhance the weak microvolt scale biopotential signals, a microcontroller that performs the analog to digital conversion, and a Bluetooth module (Figure 34). The power source is a 250 mAh poly-lithium battery. The bio-potential amplifier is a three stage amplifier with an overall gain of 65.44 dB and a 3dB bandwidth of 1.45Hz to 40 Hz set using active RC and butterworth filters [110,111].
The nano-biosensor electrode system measures the differential resting potential of the retina according to the eye movement. If the eye is moved from the center position towards the electrode, this electrode sees the positive side of the retina and the opposite electrode sees the negative side of the retina. With this measurement method, all kinds of the eye movements are measured—left/right, up/down, and blinking movement. In this BMI system, left/right eye motion is used to take decision of a robot turning left or right, hence the other up/down and blinking motions are considered as noise. Thresholds of amplitude and time duration are used to remove the blinking and up/down motion. After removing the undesired eye motion signals, only the left and right waveforms remain. The two waveforms should be classified as left and right motion to send turning commands to the robot. The classification between two eye motions is done by investigating the polarity of waveforms. Left motion shows positive polarity and right motion shows negative polarity. Figure 35 shows the classification processes of left/right eye motion. The left and right motion signals are filtered with 5–15 Hz bandwidth to achieve sharp waveforms to process further. After filtering, integration is performed to make the signals smooth. The floor noises are removed by setting the adaptive amplitude threshold. The amplitude threshold is defined by 75% of peak values of waveform. The cleaned waveforms by removing noise floor are used to decide the command signals. As shown in Figure 35(e), finally, left eye motion coded to the pulse amplitude 1 and followed by amplitude 5 pulse. Right eye motion is coded to the amplitude 5 pulse and followed by amplitude 1 pulse.

Acceleration and deceleration of the robot are controlled by EEG signals. Among several brain waves, the alpha and beta waves are focused because they represent the mental states of attention and relaxation respectively. The received EEG signals are transformed into frequency domain through Fast Fourier Transform (FFT) to investigate the brain waves. Each rhythmic brain wave is defined by the frequency band, and the mental states can be deduced by considering the amplitude change of the frequency band. To define the attention and relaxation level, the threshold are set based on the ratio between the sum of AR power spectral density (PSD) of alpha and that of beta waves. Instead of taking the sum of AR PSD value, taking the peak AR PSD value over the frequency band was found to be more robust in noisy conditions. In an experiment to validate the EEG feature extraction algorithm, a subject was asked to be in attention or relaxation mode by an experimenter and the calculated attention level was compared for accuracy with the actual mental states of a subject. The subject was asked to solve a series of quantitative problems to achieve the attentive state. Figure 36 shows the experiment result. As shown in the result, when the ratio of peak PSD value of low beta and alpha was used, the accuracy rate was about 95%.

Based on the EOG and EEG feature extraction and classification algorithms, a whole system was implemented to control the robot. The speed of a robot was controlled by attention and relaxation level extracted from EEG signals in the straight section, and the changing direction of a robot was controlled by the left and right of eye motions in the curved section.
IX. CARDIOVASCULAR HEALTH MONITORING

It is evident from TABLE 3 that ECG waveform can be used in a number of diagnostic criteria that cover abnormalities in heart function, congenital conditions, predict onset of critical heart attack (cardiovascular), stroke (cerebrovascular), or autonomous nervous system.

Coronary heart disease, cardiovascular diseases, and strokes are the leading causes of mortality in United States of America as well as around the world. According to statistics by Centers of Disease Control and Prevention (CDC), cardiovascular or cerebrovascular disease was the most prominent cause of death in United States of America. It was the cause of death in more cases than cancer, accidental injury, diabetes, and infectious diseases [84]. Hence, an average American is more likely to die of heart attack or stroke than cancer, accidental injury, diabetes, or deadly infections, such as HIV.

The point of care techniques suitable for ambulatory or out of hospital monitoring are non-invasive electrophysiological techniques: electrocardiogram (ECG) and electrical impedance tomography (EIT). Both the techniques measure electrical activity and properties of cardiovascular system for long periods of time to detect abnormality. In current medical practice, they are considered preliminary testing techniques. Any abnormalities detected in these tests are confirmed by in-hospital techniques: Echocardiogram, Cardiac Catheterization, Computed Tomography (CT) scan, Magnetic Resonance Imaging (MRI).
In present form, ECG and EIT techniques use bulky instrumentation and constrictive conductive gel electrode based sensor systems that are not suitable for very long monitoring. Smart textile technology incorporates textile based dry and glueless sensor system in textile of daily use such as vest, brassier and under garments. Nanostructured surface of dry textile electrodes, discussed in this study, have improved sensor contact with the skin to match the performance of conductive gel based sensor system. In the point-of-care system of the future, ECG and EIT will serve as reliable diagnostic and monitoring tools for detection of cardiovascular event towards preventive medication and disease management. In combination with state of the art wireless technology, they will be able to establish a remote communication link between patient and doctor for telemedicine prescription and/or quick medical intervention in case of emergency.

A. e-Nanoflex: Smartphone enabled band aid sensor

This application is a quintessential example of the implementation of textile based ECG nano-biosensors that can interface with smartphone technology. It has been demonstrated as band aid named e-Nanoflex, which is made of a nano-biosensor with Bluetooth™ module for communication with smartphone [36].

Hardware System

The e-Nanoflex prototype was designed for acquisition of ECG. The pair of nano-biosensor electrode pads was mounted on a wound dressing plaster to facilitate easy testing. The application was demonstrated with an electrode pair made of gold nanowire electrode on flexible Titanium foil as reported in [112] and textile based nano-biosensors described in section on Nanotextured textiles as electronic sensors (Figure 37).

Figure 37 (a) Scanning electron microscope image of vertical gold nanowires (b) Shows the gold nanowire electrode packaged in a medical plaster

The ECG is a differential signal, i.e. the signal is perceived as the difference in potential between two points on the skin wherein one of the electrodes acts as the reference for the other. An amplifier was used to enhance the signal strength because the signal strength of ECG, at the level of the skin, is of the order of hundreds of microvolts. Key attributes of amplifier design were large common mode rejection ratio (CMRR), small input offset voltage, and low input power consumption. The amplifier is designed in multiple stages. The instrumentation amplifier provides the first high impedance stage with a gain of 10 to avoid saturation of the saturation due impedance mismatch. Analog filters with a pass band between 0.2 Hz and 70 Hz make sure the mismatch is not seen by the later high gain stages. Two more stages of non-inverting amplifiers are used to further improve the signal quality. The amplified analog signal is then digitized by the ADC on the microprocessor at a fixed sampling rate of 200Hz. The microprocessor then communicates with the Bluetooth module using the Universal Asynchronous Receiver/Transmitter (UART) interface. The Bluetooth module continuously sends the data from the microprocessor to the data logging unit and the received data is then stored or processed by the host microprocessor of the smartphone. This application can be extended to a personal computer with a Bluetooth™ receiver [113].

The type of connection between Bluetooth devices, also known as profile, is chosen based on the kind of data that needs to be sent from one device to another. For this application, the data is a series of digits which are the output from the microprocessor. The Serial Port Profile (SPP) was chosen because it supports the continuous transmission of data. The module basically broadcasts the SPP service, and any Bluetooth device, like a phone or a Bluetooth enabled PC, that comes within range can securely connect to this device on that profile and start receiving the data if the correct passkey is entered.

One of the drawbacks of the SPP is that, in case the data transmitted is not received by the data logging device, the data is not retransmitted automatically. This problem has been considered in detail in [114]. The additional retransmit feature has to be implemented in software to improve the reliability of an SPP connection. Alternatively, the introduction of a special profile for health devices, called the Health Devices Profile (HDP), by the Bluetooth Special Interest Group (SIG) is expected to be more robust and suitable for this application than SPP.

ECG signal acquisition

This band aid type e-Nanoflex can be used for measurement of single ECG leads. Lead I ECG signal obtained from the sensor was plotted on a Smartphone in real time as shown in Figure 38. The frequency content of ECG is between 0.2 Hz and 70 Hz. The sampling rate was fixed at 200 Hz to satisfy the Nyquist-Shannon sampling theorem. A digital band pass filter with a bandwidth of 0.2 Hz to 70 Hz was implemented on the data logging device to improve the signal to noise ratio. The three limb lead signals were obtained from commercial wet Ag/AgCl electrodes, Moore Medical LLC., and from gold nanowire electrode as shown in Figure 39. The signals from the two electrodes are observably similar.

Figure 38 Shows Lead I ECG data displayed in real time on a Smartphone
Band aid type e-Nanoflex can be placed at different positions relative to the heart to get different perspectives of the heart (Figure 40). Different positions enhance individual components of the ECG waveform, thus making each position relevant to diagnosis of ECG abnormalities mentioned in section Cardiological Signal Abnormalities. The band aid sensor system can potentially be used for monitoring QT interval dispersion, which is prevalent in dialysis patients at risk of
SCD. The system is simple to apply and does not interfere with the dialysis set up. Its adaptability to Bluetooth for smartphone or PC makes it applicable to in hospital dialysis as well as POC for ambulatory dialysis.

The data from the e-Nanoflex sensors can also be sent to a remote server through the 3G network. The data was tagged with the current GPS location and the time. In case of an emergency, a message with recorded data, current location and time can be sent to the emergency response team. The snapshot in Figure 41 shows the location of the user and also the data received from the sensor as recovered from the server.

B. e-vest

The textile integrated sensors systems described in previous sections are sensor elements that are inlayed between two layers of fabric, or the fabric itself is functionalized to act as a sensor. The textile platform in this application is an inner vest that can incorporate nano-biosensors such as gold nanowire electrode [112], nanostructured textile electrode [54], or composite piezoelectric films [115,116]. It can also incorporate an infrared emitter-detection system for plethysmography and temperature sensors. The e-vest system is an implementation of a multichannel wearable wireless textile based nano-biosensor that monitors ECG and blood pressure.

System Description

The Figure 42 shows the overall system, which consists of four components. The first is a compression inner vest referred to as e-vest, with the textile electrode sensors and the printed connection traces that connect the electrodes to a sensor electronics module (SEM). The second is a photoplethysmography arm band that has Near IR LEDs and photodiodes, which are connected to the SEM through conductive traces printed from the left arm. The third is the SEM that further consists of an amplifier and filter circuits, a microcontroller, and a ZigBee wireless radio. The last is a software program running on a PC, which receives and plots the incoming data from the person wearing it.

The photoplethysmography arm band consists of two arrays of Near IR Photodiodes and a central array of three photodiodes. This assembly was described in detail in [29]. The electrodes and the arm band are connected to the SEM through conductive traces printed on the vest. The conductive traces were made using conductive inks. The arm band is removable and simply snaps on to the vest through four snap buttons (Figure 43).
The inks were formulated with conductive silver nanoparticle fillers in an elastic acrylic based binder. The snap buttons were used for connections between the e-vest, the arm band, and the SEM after wearing the e-vest without any assistance. Screen printing, which is textile manufacturing compatible, was used to transfer the ink traces following the desired pattern for the conductive connecting traces. The removable SEM and arm band makes the e-vest washable.

Sensor Electronics Module (SEM)
The amplifier which is a part of the SEM consists of 4 channels. Three channels for the bipolar limb leads—Lead I, Lead II, and Lead III. The fourth channel amplified the potential difference across the photodiode which detects the reflected IR waves from the brachial artery. The amplifiers used in the SEM had a pass band of 0.2Hz to 70Hz and a mid band gain of 50 dB for the three ECG channels. The gain was increased to 55dB for the photoplethysmography sensors for a band of 0.2Hz to 15Hz. The amplified signals from the amplifier are digitized using the onboard microcontroller for transmission (Figure 44).

The choice of ZigBee radio module was motivated because of two desired functions. Firstly, it has to support data rates higher than 9600 bps, because 4 channels of digitized ECG and BP signal has to be transmitted in real-time. Secondly, it provides communication ranges as high as possible for applications in sports, military expedition, and high risk work environments such as firefighters (Figure 45).

C. e-BRA

The systems incorporated in inner vest for men can also be integrated in inner garment for women such as a brassier. The various sensors listed in the previous section can be incorporated in the e-bra and the signals from the sensors brought to the eNanoflex [36] module through printed conductive traces or conductive threads. Figure 46 shows a picture of the e-bra, the eNanoflex module used for data acquisition and wireless transmission, and the simple signal display interface that plots the data received from the eNanoflex module.

Figure 46 Shows the e-bra worn by one of the test subjects, the eNanoflex module and the Smartphone display interface

Multichannel data acquired

The data acquired by the e-vest can be transmitted wirelessly to a PC. The data received by the PC was then filtered using an adaptive filter algorithm to minimize the effect of motion on the ECG signal baseline [117]. The data acquisition and adaptive filter was developed using MATLAB (Mathworks, Natick, MA). However, the same can be achieved on JAVA platform and can be deployed on a smartphone. Figure 47(a) shows the original 3 ECG signals Lead I, Lead II, and Lead III. It also plots the pulse waveform, the heart rate, and the estimated systolic and diastolic blood pressure. Figure 47 (b) shows the actual e-vest, arm band, and SEM module. The derived pulse transit time PTT values (Figure 48) are then used to estimate the systolic and diastolic blood pressure values based on the calibration equations previously obtained in [29]. Other sensor systems can be incorporated to develop wearable applications to monitor respiration, temperature, and blood oxygen level.

Post processing of ECG can also calculate heart rate variability (HRV), which is a prognostic and diagnostic tool. HRV is described as the sequence formed by concatenating the difference in heart rate between consecutive beats (Figure 49). It is calculated as the inverse of the difference in the intervals between consecutive R-peaks. The R peak detection algorithm used for calculation of RR interval (RRI) was as given in [118]. Autoregressive (AR) power spectrum estimation technique was used to obtain the power spectrum density (PSD) plot of the RRI sequence. The characteristic LF and HF peaks were observed [119]. Figure 50 shows a plot of the RR interval series plotted against beats and the AR PSD computed from the RRI series for the standing-up case. Figure 51 shows the same for supine ECG. AR PSD’s in both figure show a classic shift in the power distribution between LF and HF components with respect to total power. Thus, these implementations of e-vest and e-bra systems can be used for tracking of chronic conditions related to autonomous nervous regulation of cardiac activity.

Continuous multiple lead ECG monitoring can be used for detection of T-wave inversion, which is indicative of change in ventricular repolarization as mentioned previously in the section on Cardiological Signal Abnormalities. Automated post processing of ECG by algorithm for detection of T wave inversion can serve as an alarm system that will trigger a subroutine to initiate ECG signal relay through a remote server to doctor’s office for diagnosis.

X. 7BIOFEEDBACK SYSTEM FOR THERAPEUTICS

Since its introduction, smart wearable systems have been associated more with health monitoring than therapeutics. These systems are by nature dependent on biometric inputs for analysis and response, primarily to inform of audio-visual cues and/or suggestions. So while the systems described previously could only suggest medication or initiate medical intervention by doctors in remote locations, there have been proof-of-concept studies done to show that these systems can be of help in initiating audio-visual stimuli upon getting certain biosignals recorded by nanotextile biosensors. Such an automated system with decision algorithm can be used to help control and/or cure the underlying medical condition. In this section, such systems have been described that can be used therapeutically based on the biofeedback received by the sensors on board.
Figure 47(a) Real-time data plotted on the laptop (b) the e-vest worn by the test subject (c) the e-bra worn by the test subject.

Figure 48 Simultaneous plot of ECG Lead II and Pulse wave depicting the derivation of PTT.

Figure 49 R-R interval calculations from ECG.

Figure 50 (a) Plot of the RR interval series against beat number (b) Plot of the AR PSD computed from the RRI series for the Standing case.
A. Music based therapy

Music based therapy has gained a lot of attention due to recent findings in the field of neuromusicology and music cognition. Music can evoke emotions, through autonomic correlates that have been shown to cause significant modulation of parameters like heart rate and blood pressure. Consequently, Heart Rate Variability (HRV) analysis can be a powerful tool to explore evidence based therapeutic functions of music and conduct empirical studies on effect of musical emotion on heart function [120,121]. The HRV can be used to determine the autonomic nervous system activity [122]. Autonomic responses are known to vary according to the reports of valence (positive or negative) and arousal/intensity, which are considered as two dimensions of emotion [123], including musical emotions [124]. These emotions in turn have been shown to have strong autonomic correlates that regulate blood pressure and heart rate in the listener [125]. Although the initial results are promising, much research is needed to understand the autonomic nervous system activity involved in musically induced emotions, the variations in the brain processes with variations in intensity, and valence of the emotions experienced.

Few studies have been performed to examine brain process of emotions induced via auditory domain stimulus like music. Figure 52 shows some preliminary EEG measurements after application of auditory stimulus in the form of happy and sad music. While listening to both happy and sad music, there was an increase in Alpha wave power in the right hemisphere of the brain. There was also an increase in the Delta, Theta, and Gamma waves, but the extent of increase was greater during the happy music condition as compared to the sad music condition.

The textile based nano-biosensor system for ECG monitoring, such as e-vest and e-bra, can be used for recording ECG while listening to music. The plots in Figure 53 show the periodogram of the HRV signals for each type of music that was played during recording. ECG data for two minutes, one minute after the application of the stimulus music, were used for HRV analysis. The HRV analysis performed on this data shows that the emotion elicited by the type of music playing can modulate the autonomic regulation of the heart rate. A similar approach can be taken for EEG monitoring nanotextile biosensors. Music based biofeedback therapy can be a potential treatment method to improve sensorimotor, language, and cognitive domains of functioning via music. It can be especially helpful in invoking neuroplasticity for rehabilitation of TBI patients[126].
Figure 53 Shows the Periodogram of the HRV and High Frequency/Low Frequency power ration for ECG data for (a) No Music (b) Peppy (c) Happy (d) Sad

B. Neural Activity based Biofeedback Therapy for Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) covers neurological disorders involving impeded development of social behavior, acquisition of skills, and language development. All these activities require the ability to mimic, by which children imitate and learn the appropriate forms of the aforementioned attributes. The ability to mimic is associated with a class of neurons called the mirror neurons found in insula and anterior cingulate cortex of the brain, which are responsible for interpretation of complex human intentions. The functioning of these neurons can be observed by monitoring Mu waves in those regions using EEG. Mu waves are synchronized patterns of electrical activity involving large numbers of neurons in the part of the brain that controls voluntary functions. In normal subjects, the Mu waves suppress when the voluntary function has been executed, whereas, in ASD subjects, the suppression does not happen because no function was executed.

Conventional EEG measurement systems use gel based gold cup electrodes attached to the scalp with adhesive. It is obtrusive and wires sticking out of the electrodes to signal acquisition system make them impractical for use in sensitive subjects like infants and children with ASD. Alternatively, nanotextile biosensors can be incorporated with skull and baseball caps that are commonly used for infants and children. Textile based multi-electrode EEG, EOG and EMG monitoring system with embedded electronics for data acquisition and wireless transmission can be seamlessly integrated into these items for continuous detection of Mu waves (Figure 54). Textile electrodes at positions C3, CZ, and C4, according to 10-20 international system, can detect Mu waves. The textile based system is ergonomic and can enable early diagnosis in infants and planning therapy for ASD patients [127].

Biofeedback can be used for therapeutic purposes for Autism Spectrum Disorder (ASD) by operant conditioning. By giving stimuli inform of a repetitive audio/visual cues to emulate a voluntary function (waving hand, saying hello, open/close fist) and monitoring the change in Mu wave intensity, the system can condition the subject. The audio-visual loop can be controlled by the embedded logic that breaks the loop only upon detecting Mu wave occurrence and suppression, after which, it will choose another cue from the audio-visual library on the system. This system can help in ASD diagnostics by monitoring Mu waves for detecting anomalies in brain wave patterns of mirror neurons[128]. The automated system can be used at home under parental guidance, while keeping the therapist updated at remote location through internet.

Figure 54 EEG, EOG and EMG are acquired on the skin through conductive textile electrodes. The acquisition of EEG through the hair on the head was made possible by using nano-structured conductive electrode with long pillars of conductive textile to serve this purpose.
XI. CONCLUSION

Weearable textile based nano-biosensor systems with mobile platform are a new class of unobtrusive continuous health monitoring with significant benefits for neurological and cardiovascular patients or high risk patients. The basic science behind the functioning of textile based nano-biosensors shows that there is a better flow of signal, i.e. electrical current through the skin-electrode interface, than silver-silver chloride gel electrode. The bioelectromagnetic principles of origination and propagation of bioelectric signals, i.e. EEG, EOG, EMG, and ECG, show that measured electrical potential is representative of the cumulative electrical activity of the sources of these signals, i.e. neurons of brain tissue and myocytes of heart tissue. This means that the textile based nano-biosensors can measure bioelectric signals better than silver-silver chloride gel electrode. The dry electrodes can be used for long term monitoring because they do not face the problem of drying of gel and they are reusable in form of a wearable garment. The textile based wearable nano-biosensor systems discussed in this review can measure neurological signals and identify anomalies for diagnosis of targeted neurological and cardiovascular disorders. These disorders range from chronic condition to safety to rehabilitation and improved quality of life. The bioelectromagnetism principles of neural and cardiac bioelectric signals and the performance of textile based nano-biosensors provides a unique perspective to the potential for development of novel wearable systems that harness the potential of textile based nano-biosensors and wireless platform for understanding the neural and cardiac function in and out of hospital setting in unprecedented detail. The sensor systems can be used for diagnostics and therapeutics of neurological disorders such as autist spectrum disorder, traumatic brain injury (TBI), and neuroprosthetics. They can be used for highly specialized cardiac monitoring, such as the vector cardiography (VCG), impedance cardiography (ICG) or tomography, tumor detection, and prevention from sudden cardiac death by detection of T-wave alternans.

This review presents textile based nanosensors combined with wearable electronics and wireless communications systems. These systems address some challenges in engineering fibers or filaments to introduce intelligent functionality, integration of computation on textile platforms and reliable communication with wireless devices for remote data access. For the patients and medical healthcare professionals to adapt to wearable medical device technology, the devices and systems haven meet challenges in form factor, device longevity and wireless communication requirements that are specific to each application.

Patterns of design for wearable systems architecture is a burgeoning body of knowledge. With continuously evolving communication technology, miniaturization of electronics, advances in flexible electronics, garment technology and battery technology, wearable technology is becoming a viable alternative to conventional medical health monitoring technology. Consensus standards for data communication, data security, and textile based wearable devices and systems are key to acceptance of these devices and systems in all aspects healthcare including therapeutics.

REFERENCES

[18] Wearable Wellness System from Smartex s.r.l. Pissa Italy. www.smartex.it
2010 First International Conference on , vol., no., pp.4-9, 18-25 July 2010

Vijay K. Varadan
Professor Vijay Varadan is currently the Twenty First Century Endowed Chair in Nano-and Bio-Technology and Medicine, and Distinguished Professor of Electrical Engineering, and Distinguished Professor of Biomedical Engineering (in College of Engineering), and Neurosurgery (in the College of Medicine) at the University of Arkansas. He is also a Professor of Neurosurgery at Penn State University College of Medicine.

He joined the University of Arkansas in January 2005 after serving on the faculty of Cornell University, Ohio State University and Pennsylvania State University for four decades. He is also the Director of the Center of Excellence for Nano-, Micro-, and Neuro-Electronics, Sensors and Systems.

He has concentrated on the design and development of various electronic, acoustic and structural composites, smart materials, structures, and devices including sensors, transducers, Microelectromechanical Systems (MEMS), synthesis and large scale fabrication of carbon nanotubes, Nano Electro Mechanical Systems (NEMS), microwave, acoustic and ultrasonic wave absorbers and filters.

He has developed neurostimulator, wireless microsensors and systems for sensing and control of Parkinson's disease, epilepsy, glucose in the blood and Alzheimer's disease. He is also developing both silicon and organic based wireless sensor systems with RFID for human gait analysis and sleep disorders and various neurological disorders.

He is a founder and the Editor-in-Chief of the Journal of Smart Materials and Structures. He is the Editor-in-Chief of the Journal of Nanomedical Science in Engineering and Medicine.

He is an Associate Editor of the Journal of Microlithography, Microfabrication and Microsystems. He serves on the editorial board of International Journal of Computational Methods. He has published more than 500 journal papers and 14 books. He has 13 patents pertinent to conducting polymers, smart structures, smart antennas, phase shifters, carbon nanotubes, and implantable device for Parkinson's patients, MEMS accelerometers and gyroscopes. He is a fellow of SPIE, ASME, Institute of Physics, and Acoustical Society of America. He has many visiting professorship appointments in leading schools overseas.