Notes on Eigen Modal Analysis of Antennas

George Shaker, Nagula Sangary, and Safieddin Safavi-Naeini
University of Waterloo
(Email: gshaker@uwaterloo.ca)

Abstract—Modal analysis among the circuit and filter communities is widely spread. A close look at the design steps of many of the available modern filters reveals the utilization of modal techniques as a key design component [1]. Notably, modal analysis of antennas has long been known in the antenna community. Lo and Richards contributed significantly to the advancement of this theory in the late 1970s and early 1980s [2]. However, their approach was limited in its accuracy due to the utilization of some theoretical assumptions of the complex resonant frequencies of the antennas they studied. These assumptions imposed significant limitations on the antennas’ structures that could be analyzed, along with limitations on the achievable Q values. To date, modal analysis in antenna design has not evolved at the same rate it did in circuit/filter applications.

In this communication, the modal theory of antennas is revisited, believing that it brings invaluable information towards facilitating the design of multi-feed multi-band antennas. First, some subtle changes are proposed to enhance the applicability of this theory. Next, using some efficient computational techniques, the proposed formulations are shown to predict, to a very high accuracy, the input impedance of any antenna under study. This greatly simplifies the antenna problem and focuses design efforts on finding the appropriate complex impedance frequency to cover a required band. Finding the appropriate feed location is then a matter of extracting the corresponding impedance map for this antenna through simple field manipulations.

Index Terms—Antenna Design, Eigen Modes, LTE/MIMO Antenna, 4G smartphone

I. BACKGROUND

There exists a plurality of work on antenna analysis using modal expansion techniques. The work of Harrington and Mautz is one example [3], and the work of Shen and MacPhie is another [4]. Remarkably, the analysis and design of printed antennas is widely documented in numerous research papers and assembled in several books (see for example [5]-[23]). In its simplest form, a planar printed antenna is modeled as a transmission line model with its radiating edges treated as slots. A more rigorous analysis came in 1977 by Professor Lo [2] who treated the planar printed antenna as a cavity. His work was amended by multiple refinements to the modal approach for antenna design [14]-[15]. However, the research following his approach essentially diminished since the early 1990s with rare subsequent occurrences in publications. This is primarily due to the limited accuracy of the approach when dealing with practical antenna designs. The limited accuracy was mainly attributed to the approximate calculation of the complex resonant frequency. This means that if such a frequency was calculated to a higher accuracy, then the technique would result in much better results. This will be the main focus of this chapter.

Although the transmission-line model is easy to use, it suffers from numerous disadvantages [11]. For instance, it is only useful for patches of rectangular shape, the fringe factor must be empirically determined, it ignores field variations along the radiating edge, and it is not adaptable to inclusion of the feed. These disadvantages are diminished in the modal expansion analysis technique, whereby the patch is viewed as a thin cavity with magnetic walls. In this technique, the field between the patch and the ground plane is expanded in terms of a series of cavity resonant modes or Eigen functions, along with its eigenvalues or resonant frequencies associated with each mode. The effect of radiation and other losses is represented in terms of either an artificially increased substrate loss tangent [11] or by the more elegant method of an impedance boundary condition at the walls [2] [8]. In fact, the later method results in a much more accurate formulation for the input impedance and resonant frequency for rectangular, circular, and other simple geometrical patches, at only a modest increase in mathematical complexity. However, it remains quite limited when irregular geometries are considered. It should be emphasized that the underlying theoretical formulation of the Eigen Modal analysis is quite distinguishable from that of the Characteristic mode of antennas [28] [29].

Here, given the prior art, there are two major approximations with the modal theory that need to be addressed with care: the use of the impedance boundary condition, and the effect of radiation on the orthogonality condition and all of the associated formulations.

II. MODERN EIGEN MODE SOLVERS

It can be shown that one way to realize an RLC equivalent network for an antenna is to have accurate knowledge of the value of the complex modal resonance frequency ω_{mn}. Using approximate impedance boundary conditions is limited in its application to antennas with simple configurations and high Q values. Moreover, modern antenna designs typically feature structures with several slots, along with relatively low Q values. This severely limits the utilization of the concept of impedance boundary conditions for such a problem.

One possible alternate method, given the advancements in the computational powers and techniques, is to utilize a generalized EM Eigen solver. Several numerical Eigen solvers...
found their way recently into leading commercial EM software, targeting applications in acoustics, photonics, and RF filters. A brief list of EM-based commercial Eigen solvers would include HFSS from Ansoft (using finite elements) [30], and the EM Solver Module of COMSOL Multiphysics (using finite elements) [31].

The EM finite elements approach for the Eigen frequency search is a variational technique in which a minimization process automatically seeks out the characteristic solution. This is usually done in a numerical process that truncates the space around the modeled structure in a perfect metallization. However, driven by needs for better radar cross section analysis, the technique was substantially improved, allowing for the incorporation of perfectly absorbing materials for truncation of the solution space and thus adequately simulating the space bounds of the antenna. This yields a different and more general approach compared to the earlier method in [24] and [8]-[11], where the interior region of the antenna is mathematically decoupled from the exterior region through the use of an equivalent aperture admittance as the boundary condition. It can be readily seen that the earlier approach is limited by the accuracy of the equivalent aperture admittance. However, using a numerical Eigen solver, this limitation does not exist anymore, since the solver domain is only truncated at the absorbing boundaries. This allows for the calculation of complex Eigen frequencies of any general antenna. To date, very little published research utilizes these capabilities. In fact, just recently, Stuart [26]-[27] adopted the concept of Eigen mode analysis using COMSOL to study the Q of small 3D antennas.

It is noteworthy to mention at this point that Eigen solvers are also available in some Method of Moments (MOM) codes. For example, the open source Matlab Antenna toolbox [32] features such a capability. However, the MOM Eigen solvers suffer from severe complexities when finite dielectrics are included in the analysis. This results in a significant decrease in both the computational speed and the resulting accuracy, especially when compared to those achieved by the FEM Eigen solvers.

As an example to illustrate some of the features of EM Eigen solvers, let us consider a patch antenna with dimensions $L = 35\text{mm}$ and $W = 25\text{mm}$, on a foam substrate, and a height of $H = 200\text{mil}$, placed on an infinite ground plane. Such a patch can be easily studied using a 3D Eigen mode solver like those available from COMSOL or Ansoft (which became part of ANSYS). Fig. 1 shows the magnitude of the electric field for the first three resonant modes of the patch. The solution set for each mode contains the complex resonant frequency in addition to the electric and magnetic field vectors. This information is sufficient to construct the RLC model for a resonant antenna, as discussed in the next section. Fig. 2 illustrates how the complex resonant frequency calculation converges during different simulation steps.

III. ADOPTED ANTENNA ANALYSIS

Let us consider a randomly shaped antenna having an axis aligned with the z-axis and placed on top of a PCB with relative permittivity ε_r. Let us also assume that the antenna will be probe-fed. So the target here is evaluate the input impedance at some arbitrary feed locations without having to undergo multiple full-wave driven simulations (to find the best feed location from an impedance point of view). The setup for a numerical Eigen problem would take the form shown in Fig. 3, but without any feed-specific model. The Eigen fields would then occupy all the space surrounding the antenna (reflecting all possible fringing fields). To utilize the modal data in calculating the input impedance, one needs to evaluate:

$$
Z_{in} (x_0, y_0, z_0 = h) = \frac{V_{in} (x_0, y_0, z_0 = h)}{I_{in} (x_0, y_0, z_0 = h)} = \frac{\int h E_{z} (x_0, y_0, z) \, dz}{\int J_{z} (x_0, y_0, z_0 = h) \, ds}
$$

(1)
The electric field between the top antenna metallization and the ground plane may then be expanded using the Eigen field functions as [25] [24]:

\[
E_z(x, y, z) = \text{j} \omega \mu \sum_p \frac{1}{k_p^2 - k_p^2} \left\langle J, \psi_p \right\rangle \psi_p(x, y, z) \tag{2}
\]

where

\[
\left\langle J, \psi_p \right\rangle = \int J \psi_p^* dv \tag{3}
\]

And

\[
\left\langle \psi_p, \psi_p^* \right\rangle = \int \psi_p \psi_p^* dv \tag{4}
\]

Note that the modal field for mode \(p \) is given by \(E_p = \psi_p(x, y, z) \) and \(V \) denotes the volume surrounding the antenna and enclosed by the PML cover. Also, note that in (2) and all of the subsequent formulations, the surface and volume integrals are written in a compact format for simplicity. In terms of the complex resonance frequency, the electric field at the source location may be re-written as:

\[
E_z(x_0, y_0, z_0) = \text{j} \omega \mu \sum_p \frac{1}{\omega^2 - \omega_p^2} \left\langle J, \psi_p \right\rangle \psi_p(x_0, y_0, z_0) \tag{5}
\]

As discussed earlier, the complex resonant frequency and the normalized field distribution are direct outcomes of any FEM Eigen mode solver. Thus, the field normalization process can be easily carried out as a post-processing numerical integration step. Hence, one can write:

\[
Z_{in}(x_0, y_0, z_0) = h = -\text{j} \omega h \sum_p \frac{1}{\omega^2 - \omega_p^2} \left\langle \psi_p, \psi_p \right\rangle \psi_p(x_0, y_0, z_0 = h) \tag{6}
\]

The input impedance can then be re-written in an expandable form of a parallel RLC circuit as:

\[
Z_{in}(x_0, y_0, z_0) = -\frac{1}{\omega C_{dc}} - \text{j} \omega \sum_p \frac{1}{C_p} \frac{1}{\omega^2 - \omega_p^2} \tag{7}
\]

where \(C_{dc} \) denotes the dc capacitance of the patch (DC mode), and

\[
\frac{1}{C_p} = h \left\langle \psi_p^*(x_0, y_0, z_0), \psi_p(x_0, y_0, z_0) \right\rangle \tag{8}
\]

\[
R_p(x_0, y_0, z_0) = \frac{Q_{rad}^{\text{out}}}{\omega_p C_p(x_0, y_0, z_0)} \tag{9}
\]

\[
L_p(x_0, y_0, z_0) = \frac{1}{\omega_p^2 C_p(x_0, y_0, z_0)} \tag{10}
\]

with

\[
\omega_p = \sqrt{\left(\text{Re} \omega_p\right)^2 + \left(\text{Im} \omega_p\right)^2} \tag{11}
\]

\[
Q_{rad}^{\text{out}} = \frac{1}{2} \frac{\left(\text{Re} \omega_p\right)^2 + \left(\text{Im} \omega_p\right)^2}{\text{Im} \omega_p} \tag{12}
\]

The generalized equivalent circuit for a multimode radiator can then be developed, as in Fig. 4. It should be noted that an additional inductance is added to account for the inductance associated with probe feeding. \(C_{dc} \) is the dc capacitance, where its associated loss is typically ignored when using low-loss substrate materials. The \(R_pL_pC_p \) circuit represents the fundamental antenna mode, with \(R_pL_pC_p \) representing the higher order modes taken into consideration. The term \(L' \) is associated with an approximation for the effect of the higher order modes that are not considered in detailed analysis.

It is important to mention that all previously developed formulations assume orthogonal mode expansions, a condition which is not strictly satisfied when treating the antenna as a lossy cavity (due to radiation and/or material losses). To the authors’ knowledge, no prior work has rectified such an issue. It is also important to note that the accuracy of the Eigen analysis is further mystified when trying to assess the validity of modal expansion technique using numerical PML...
boundaries. Observing Fig. 3, one would notice that the problem space is bounded by PEC walls defining a metal cavity. The PMLs are placed inside the cavity to encompass the space around the antenna. From an Eigen point of view, this can be classified as modal analysis of an inhomogeneous cavity. For the orthogonality condition to remain valid, this metal cavity needs to remain lossless. Here the choice of PML boundaries makes a significant impact on the orthogonality of the Eigen modes, since the most prevalent formulations include that of [33] which involves lossy PML, and that in [34] which is a lossless form. The former is easier to implement numerically, while the latter is preferable from a formulation point of view. Regardless of the nature of the PML, as will be shown later, the Eigen-based method remained useful for presenting first-order designs of many different types of antennas, despite the lack of strict orthogonality among the Eigen modes.

IV. EFFECT OF THE FEEDING MECHANISM

Before being able to construct the impedance response (following Fig. 4), one first needs to account for the feeding mechanism. Proximity coupling and aperture feeding are among the possible schemes [15][18][19][20][37][36][37]. In this section, the probe-feeding mechanism is chosen as an example for discussion. For most typical probe-fed antennas, the probe can be modeled with an inductance, \(L_{probe} \). There are several papers on the modeling of such an inductance. The work in [38] summarizes different techniques for the calculations and presents an interesting discussion on their accuracy.

Fig. 5 shows a pictorial that illustrates a typical circuit resonance with and without a feed probe. The reactance plot clearly shows the effect of the probe reactance on a parallel resonant circuit model, with no effect (as expected) on the resistance plot. The values shown are for \(L_{patch} = 1\text{nH}, C_{patch} = 1\text{pF}, R_{patch} = 100\Omega \), and a common probe inductance of \(L_{probe} = 2\text{nH} \). This means that care should be exercised when developing impedance models for the antennas, since the feed inductance can severely affect the realizable impedance bandwidth.

Apart from the circuit-model manipulations, and to clearly assess the effect of the probe inductance on the input impedance of antennas, let us study the variation of patch antenna impedance when varying the probe location. Fig. 6 shows a typical rectangular patch configuration, with its typical mesh layout and fundamental mode field configuration. The substrate is chosen to be foam with \(\varepsilon_r = 1 \) and no associated losses. The substrate height is allowed to vary in discrete values: \(H = 20\text{mil}, \ H = 100\text{mil}, \text{ and } H = 200\text{mil} \). For illustration purposes, the patch is chosen as a fixed rectangular metallic strip with dimensions of length \(L = 25\text{mm} \) (y-dimension) and width \(W = 35\text{mm} \) (x-dimension). This means that the fundamental mode is directed longitudinally along the patch's width.
The effect of a probe feeding a patch antenna at different feed locations \((x_f, y_f) = (X_{loc}, Y_{loc})\) is studied in Fig. 7 - Fig. 10. (Origin of the co-ordinate system is located at the center of the patch).

Fig. 7 illustrates the variation of the input reactance that occurs from varying the feed location across the x-direction for different substrate heights. The reactance remains fairly constant for each fixed height. On the other hand, Fig. 8 shows that the input resistance varies as predicted and is not affected by the associated probe inductance.

Fig. 9 and Fig. 10 show how the antenna reactance and resistance, respectively, vary across the y-direction. Varying the probe location across the y-direction adds some complexity to the analysis, such that simple probe models are not valid anymore. This is mainly due to the fact that most of the analysis on probe inductance assumes symmetric placement across the axis of a patch antenna or a parallel plate waveguide [25]. In reality, when the probe is closer to one edge than the other, it will suffer from some unbalanced currents, possibly explained by applying the image theorem at the probe location. Thus, in realistic antenna design with several slots and complex shapes, the exact calculation of the probe inductance at a random feed location is quite a tedious task. A similar challenge arises when dealing with proximity or aperture feeding mechanisms (i.e., how to extract a transformer model to properly represent the proximity/aperture scheme for an arbitrary shaped 3D antenna). Such cases require further investigation and necessitates careful when using the proposed Eigen analysis to estimate the input impedance of antennas.

V. THE CONCEPT OF IMPEDANCE MAPS

A close look at (7) suggests the possibility of creating a map of the input impedance at each point of an antenna surface when fed by a probe. The ability of creating such maps is of great importance. Traditional techniques involve a large number of parametric trials and optimization cycles until a desired feed resistance is found. With the proposed concept, it is shown that seeking a location with specific input resistance is reduced to a single Eigen mode simulation and some simple field processing procedures.

To illustrate the proposed concept of impedance maps, two examples may be used. First, an E-Slot antenna [40] [41] is widely known in the antenna community. It is simply a patch antenna with two slots forming the shape of the letter "E". It is usually used to realize two close resonances and thus meet a wider bandwidth requirement, which is not achievable with a simple patch of the same dimensions. Also, it is sometimes used to create two resonances apart, to meet some dual band requirement. The latter application will be studied here.

A. Dual-Band Single-Feed and Dual-Feed Antenna Designs

An E-Slot antenna [40] [41] is widely known in the antenna community. It is simply a patch antenna with two slots forming the shape of the letter “E”. It is usually used to realize two close resonances and thus meet a wider bandwidth requirement, which is not achievable with a simple patch of the same dimensions. Also, it is sometimes used to create two resonances apart, to meet some dual band requirement. The latter application will be studied here.

Fig. 9. Reactance variation with moving the feed location in the y-direction.

Fig. 10. Resistance variation with moving the feed location in the y-direction.

Fig. 11. The E-Slot antenna.
Table 1. Modal solution results of the first two resonant modes.

<table>
<thead>
<tr>
<th>Complex Frequency</th>
<th>Extracted Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0586+j0.045109</td>
<td>22.824</td>
</tr>
<tr>
<td>2.2561+j0.046232</td>
<td>24.4373</td>
</tr>
</tbody>
</table>

Fig. 12. Total electric field distribution of the first fundamental mode.

Fig. 13. Total electric field distribution of the second fundamental mode.

Fig. 14. Surface current distribution of the first fundamental mode.

Fig. 15. Surface current distribution of the second fundamental mode.

Fig. 16. The resulting resistance map for the first mode with a feed location suitable for dual feed operation.

Fig. 17. The resulting resistance map for the second mode with a feed location suitable for dual feed operation.
Let us arbitrarily choose the following values for the parameters shown in Fig. 11:
$L = 65$, $W = 105$, $W_1 = 15.3$, $W_2 = 6.3$, $L_x = 47$, and
$H = 3$mm on a foam substrate. An Eigen mode simulation is applied seeking the first two fundamental modes of such patch.

Table 1 shows a screen capture of the Eigen solver report solved in HFSS, and processed in Matlab, with Fig. 12 - Fig. 15 illustrating the resulting modal electric field and surface current distributions of both modes.

Now, using the resulting information from the Eigen solver and processing it using (7), one can plot the resistance values at any location on the patch surface, without the need for excessive parametric procedures. Fig. 16 and Fig. 17 show the resulting maps for each of the modes, respectively, with scales set to Ohms. For comparison, Fig. 18 compares the normalized input resistance (to 50 Ohms) across a horizontal center line of the E-patch at 2.05GHz (when generated using an actual feeding probe through driven simulations) versus that predicted from the map. A very good correlation is observed. As noted in Fig. 16 and Fig. 17, there are a number of separate feed locations that can each excite one of the modes, while slightly perturbing the other. By placing two physical feed probes at the locations highlighted in Fig. 16 and Fig. 17, one realizes a dual-band dual-feed antenna with its response verified through a single driven numerical simulation, as shown in Fig. 19.
Using the same maps, one can easily find a feed location to excite both modes of interest, simultaneously. Fig. 20 and Fig. 21 highlight one possible location. Using the modal analysis information, it is possible to predict the return loss plot of such single-feed dual band antenna. Fig. 22 compares the resulting return loss plot using the Eigen mode analysis with that from a single driven simulation with an actual feed placed at the location shown in Fig. 20. It is noteworthy to observe that the deviation seen in Fig. 22 may be attributed to two important factors. First, only the first two modes were utilized in (7). Adding more modes would increase the accuracy of the model, at the expense of more computational complexity. Second, placing the feed probe near the corner of the patch implies some inaccuracy in the utilized probe formulation (as discussed in section 5.6).

B. Design of Smart Phone Antenna

The previous example featured a planar antenna. To verify the usefulness and the generality of the proposed modal analysis approach, this example discusses the design of a conformal 3D cell phone antenna. Even more complex variants of this design [42] can be studied using the same methodology. For simplicity, let's focus on a design that meets the requirements for the 900MHz cellphone band. Simple estimations using the Q-BW relations [43] [44] indicate that we need a Q of around 11 to cover GSM900 band with VSWR of 3.

For a smartphone board of 45X90mm, one may use a simple strip wrapped around the edge of the board, as shown in Fig. 23. The wrapped strip has an overall height of 4mm and is connected to the board through a short strip connection. The exact dimensions are determined from an Eigen mode simulation that searches for the required complex frequency to meet the bandwidth requirements. After some parametric trials, it is possible to have a design with modal data, as shown in Fig. 24. Here, the first fundamental radiating mode of the antenna is numbered as Mode 2. Its quality factor is around 9.6, which ensures meeting the required impedance bandwidth. It is worth mentioning that Mode 1 in Fig. 24 denotes a non-radiating numerical artifact mode associated with the perfect matching layers that terminate the space around the cell board.

Once a satisfactory Q is realized at the desired resonance frequency, the field data associated with the simulated structure is processed and the impedance (resistance) maps are generated (see Fig. 25). To simplify the map representation, only the portion corresponding to the antenna’s actual metallization is shown (45mmX10mm), with any resulting input resistance of a value of 1000ohm or above ignored (since in this example, we are merely seeking potential feed points with 50Ohm input resistance). Studying these maps, one can rapidly find a suitable location for the feeding probe to achieve a desired reflection coefficient. Fig. 26 shows the resulting input reflection coefficient from a numerical driven simulation of the cell antenna. It can be seen that the required bandwidth was successfully covered.

To further demonstrate the accuracy of the generated maps, Fig. 27 and Fig. 28 show the predicted input resistance at two arbitrary locations. Next, an actual feed probe is used in a number of driven simulations. The probe location is fixed across the x-axis, and is allowed to vary across the y-dimension. The resulting input resistance is shown in Fig. 29. Comparing Fig. 27, Fig. 28, and Fig. 29, there is a maximum of 5% deviation between the results from the maps and those from the driven simulations. This is an acceptable accuracy, considering that the resistance maps were generated for only the first fundamental radiating mode. Including a few more additional modes should enhance the accuracy at the expense of more computational efforts.
VI. APPLICATION IN TUNABLE ANTENNA DESIGN

Let us consider a probe-fed patch antenna design of 60X40mm, on a 3mm foam layer over a large ground plane. The dominant radiation mode of the antenna resonates at 2.16GHz. Let us further assume that the antenna shape has to be fixed, while meeting a VSWR=2:1 or better from 1.9GHz to 2.1GHz. A look at the antenna scattering parameters using a probe 5 mm off-center of the patch's long edge, and using the aforementioned \(Q \) calculations, it becomes clear that no RLC matching network exists to enable meeting the requisite bandwidth. One alternative is to use a tunable matching network. One realization for this network is shown in Fig. 31, where \(L_1 = 22[\mu H] \), \(C_1 = 1[pF] \), and \(C_2 \) varies from \(1[pF] \) to \(4[pF] \). Variable capacitors are widely available in various technologies, such as MEMS, BST or Silicon. Unfortunately, there is no such thing as ideal components, and all inductors and capacitors will have an associated \(Q \) value. When dealing with portable devices, one is typically bounded by surface mount devices (SMDs) to keep the circuit footprint as small as possible. The inductor \(Q \) of the 0402 family is typically less than 15, with slightly better numbers for the capacitors [45]. The \(Q \) numbers are even worse for smaller families as the 0201. Currently, higher \(Q \) values are possible, but with a significant markup on price [45]. Thus, when considering the component losses in the matching network, and assuming a \(Q \) of 20 for the inductors and \(Q \) of 25 for the capacitors, the overall system efficiency (match+antenna) would range from 70% to 80% across 1.9GHz to 2.1GHz instead of the near
100% efficiency for a metal-based naturally-matched resonant patch antenna on a foam substrate.

Another critical issue associated with matching networks is the ability to withstand high peak RF voltages when the load is in a high VSWR scenario. For example, let us consider feeding the aforementioned antenna when matched with the circuit in Fig. 31, using a 34dBm signal (a typical value in cellphone applications). Let us also assume using a silicon-based solution, as that from Peregrine Semiconductor. The peak RF voltage rating of such a tunable capacitor is typically much less than 30V.

Interestingly, a quick calculation of the RF voltages across C_2 for different load conditions reveals that the capacitor may in fact suffer from much higher voltages (Fig. 32, courtesy of Peregrine Semiconductor [47]). This is quite a serious issue that limits the practical application of the tunable capacitor concept in many applications.

Let us now consider an alternate solution by connecting the tunable capacitor directly to the antenna metallization. This topology is widely adopted in reconfigurable antenna solutions [46]. Here, the Eigen mode analysis discussed earlier can be applied to find the optimum location and value of the tunable element, in order to cover the desired range of frequencies. A capacitor Q of 25 was used in all numerical simulations. It was found that placing the capacitor 10mm off-center across the long edge of the patch antenna would suffice. It is important to note that placing the capacitor directly at the edge would result in a wider tuning range at the expense of lower antenna efficiency. Fig. 33 shows a pictorial of the probe-fed antenna when loaded with a tunable capacitor at 10mm off-center (probe placed 15mm apart from capacitor). Fig. 34 demonstrates the tuning range of the antenna. A full-wave simulation reveals that the antenna has an overall efficiency of 90% or higher for all tuning states. In addition, the peak RF voltage remains below 17V in all cases. This example shows the versatility of the Eigen mode method in tackling tunable-based designs. It also demonstrates that loading the antenna with the tunable element has some system advantages compared to relying on a tunable matching network.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, the modal theory of antennas was re-visited. Through some basic analysis, a number of limitations with the commonly used formulations were highlighted. Some subtle changes were proposed to increase the range of validity and improve the accuracy of the relevant formulations. Through these formulations, the designer will always have relevant information about the maximum attainable bandwidth, the operational frequency, and the radiation pattern of any antenna at hand.

In addition, the concept of impedance maps was proposed and was demonstrated as an efficient design tool through a number of design examples. This is a special concept that allows the designer to predict beforehand the impedance values at any location on a general antenna, without need for parametric and optimization trials seeking an appropriate feed location. Notably, the presented implementation steps are quite general and can be easily used towards the design of multi-band multi-feed antennas.

Notably, there is still a major challenge with the available synthesis procedures. Specifically, there is still no systematic approach to find an antenna structure or form with the required complex frequency needed to meet the design specifications. To search for such a design, an efficient optimization strategy is needed. One should note that this optimization cycle is expected to be different from the traditional ones, given the presented advancements in the calculation of the antenna quality factor. An enhanced optimization cycle would then translate the return loss specifications into seeking structures with specific resonant frequencies and quality factors. This translation would provide the optimizer with some physics-based knowledge of the structure investigated, which in turn should improve the convergence of the optimization cycle.

Fig. 33. Probe-fed patch antenna loaded with a tunable capacitor.

Fig. 34. The variation in the input reflection coefficient of the antenna for different capacitor values.

REFERENCES

George Shaker (BASc, MASc, PhD) joined DBJay Limited at its founding, where he is currently a Principal Scientist and Head of Research. From 2006 to 2011, George was affiliated with RIM's (Blackberry's) RF R&D division, first as an NSERC scholar, then as a senior EM researcher, reporting directly to the RIM's vice president of RF R&D. Over the last decade, George has contributed to products available from Hi Tek International, Panasonic, COM DEV Limited, Research in Motion (Blackberry), American Microelectronic Semiconductors (ON-Semiconductors), DBJ Tech, Konka, China Mobile, and Tri-L Solutions (GTS). George is also with the Department of Electrical and Computer Engineering at University of Waterloo as an Assistant Professor (Adjunct).

Dr. Shaker has authored/coauthored more than 60 journal publications, conference papers, and technical reports, along with more than 15 patents/patent applications. George has served as session co-chairman, TPC member, and short course/workshop lecturer in several international scientific conferences.

George was the recipient of multiple awards during his PhD studies, including the NSERC Canada Graduate Scholarship, the Ontario Graduate Scholarship, the European School of Antennas Grant at IMST-GmbH (2007), the IEEE AP-S Best Paper Award (2009, top 3), the IEEE AP-S Best Paper Award (HM, Twice, 2008, 2011), the IEEE Antennas and Propagation Graduate Research Award (2008/2009), NSERC CGS-FSS (2009/2010), the IEEE MTT-S Graduate Fellowship (2009), the Electronic Components and Technology Best of Session Paper Award (2010), and the URSI-International Union of Radio Science Young Scientist Award (2014). A paper he co-authored in IEEE Sensors was among the top 25 downloaded papers on IEEEXplore for several consecutive months (2012). Dr. Shaker is a Senior Member of the IEEE.

Nagula T. Sangary (BA, MA, PhD, MBA) was born in Jaffna, Sri Lanka, on August 30, 1964. He received degrees in Electrical Engineering, B.Sc from Texas A&M University in 1988, M.Sc. and Ph.D. from McMaster University, in 1992 and 2002 respectively. In 2014, he received a MBA degree from University of Oxford, UK.

Currently, he is a consultant in the high technology industry and is involved in many start-ups in the areas of wireless products, healthcare and cloud based services. In addition, he is an Adjunct Professor at University of Waterloo and McMaster University in the Department of Electrical and Computer Engineering and also a visiting Professor at Central South University in China.

Dr. Sangary has more than eighteen years of work experience in the wireless industry with three years at Nortel Networks working on CDMA radio design and fifteen years with Blackberry working on Wireless systems and RF designs applicable to all wireless standards. He has introduced emerging technologies, setup and managed many product development teams and was responsible for academic research activities at Blackberry. In academia, he has co-supervised many PhD and M.Sc students, collaborated on advanced research activities with numerous professors worldwide, designed and presented several technical courses and workshops. He holds more than 35 patents in the area of Wireless communication systems and has published over 40 papers in technical journals and conferences in the areas of Antenna, EM numerical simulation and Wireless communication. He is a reviewer for many journals and conferences and has chaired numerous technical conference sessions, authored and presented several technical and invited papers at wireless conferences, standard committees and regulatory agencies. He is also a member of many academic advisory boards and has in-depth conceptual understanding of electromagnetism, microelectronics, device physics, and wireless communication systems. He is a member of engineering honors societies Eta Kappa Nu and Tau Beta Pi.

Safieddin Safavi-Naeini (BASc, MASc, PhD) was born in Gachsaran, Iran, in 1951. He received the B.Sc. degree in electrical engineering from the University of Tehran, Tehran, Iran, in 1974 and the M.Sc. and Ph.D. degrees in electrical engineering from the University of Illinois, Urbana-Champaign, in 1975 and 1979, respectively. He joined the Department of Electrical and Computer Engineering, University of Tehran, as an Assistant Professor in 1980 and became an Associate Professor in 1988. In 1996, he joined the Department of Electrical and Computer Engineering at University of Waterloo, ON, Canada, where he is a Full Professor and the RIM/NSERC Industrial Research Chair in Intelligent Radio/Antenna and Photonics. He is also the Director of a newly established Center for Intelligent Antenna and Radio System (CIARS). His research activities deal with RF/microwave technologies, smart integrated antennas and radio systems, mmW/THz integrated technologies, nano-EM and photonics, EM in health science and pharmaceutical engineering, antenna, wireless communications and sensor systems and networks, new EM materials, bio-electro-magnetics, and computational methods. He has published more than 80 journal papers and 200 conference papers in international conferences.

Dr. Safavi-Naeini has led several international collaborative research programs with research institutes in Germany, Finland, Japan, China, Sweden, and the USA. He is a fellow of the IEEE.