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Abstract—The problem of high-frequency diffraction by
elongated bodies is discussed in this work. The classical
approach is shown to require too high frequencies for its
applicability. Attempts to improve the approximating properties
of the asymptotic methods are discussed, focusing on the case of
strongly elongated bodies examined in detail. The asymptotics
are governed by the elongation parameter, the ratio of the
longitudinal wave dimensions of the body to its cross-section.
The cases of axial incidence as that of incidence at a grazing
angle to the axis are considered. Both the asymptotics of the
induced currents on the surface and of the far field amplitude
are developed. Comparison with numerical results for a set
of test problems shows that the leading terms of the new
asymptotics provide good approximation in a uniform manner
with respect to the rate of elongation.

Index terms—High-frequency asymptotics, diffraction, elon-
gated bodies.

I. INTRODUCTION

Methods of high-frequency diffraction remain an important
tool for the analysis of wave phenomena in many applications.
Classical results of Fock, Keller and others are restricted to
geometries in which there is a single large parameter kρ, which
measures the characteristic size in wave lengths. The condition
of validity of these asymptotic expansions requires that all
other quantities describing the problem should not compete
with this large parameter. In some cases, this imposes condi-
tions that are too restrictive on the frequency, by requiring it to
be very high. One of such cases is the diffraction by elongated
bodies.

Interest in high-frequency diffraction developed many years
ago to fulfill the needs of numerous applications in radio-
engineering. Since computers were not powerful at that time,
alternatives to purely numerical analysis were highly appre-
ciated. One of the important advances made on the basis of
canonical problems was formulated in terms of the localization
principle [1], which made it possible to find solution of
diffraction problem for a specific convex body and deduce
approximate formulas for the field distribution on its surface.
These formulas are also applicable to any other body with
the same values of the principal curvatures at a given point.
Thus it is possible to decompose the domain occupied by

the scatterer into smaller parts and to approximate each part
with a canonical problem, whose solution leads to the local
asymptotic representations valid in each of the subdomains.
The matching of the local expansions is a nontrivial problem,
albeit a solvable one as a rule.

Application of the localization principle enabled Fock to
find general formulas for the field in the penumbra region by
working with the paraboloid of revolution as the particular
body [2]. However, the same formulas can be obtained more
easily with the help of the parabolic equation method. We will
remind the outline of these derivations in the following section,
since many of the ideas that form the basis of these derivations
remain unchanged in the modern approach to solving the
problems of diffraction by elongated bodies.

II. FOCK ASYMPTOTICS

A. The main assumptions

Let us consider the wave field in the near vicinity of the
light-shadow boundary on the surface of a convex body. This
so-called Fock domain appears to be the cradle of creeping
waves that propagate to the shadow region of the boundary,
and of the Fresnel transition field in the penumbra region (see
Fig. 1).

Our first step is to introduce a coordinate system in which
the surface of the body coincides with one of the coordi-
nates surfaces. Usually such a coordinate system is formed
by adding the normal to the semi-geodesic coordinates on
the surface. That is, we consider a set of geodesics whose
directions are defined by the rays of the incident field, and
measure the first coordinate s along these geodesics starting
from a reference line, which is usually the light-shadow
boundary on the surface. The second surface coordinate α just
parameterizes the geodesics from this set. In this approach,
how the normal coordinate is defined is not important and
it can be taken as the geometrical distance to the surface
for the case of a general body. However, when dealing with
elongated bodies we will return to this question of the choice
of the normal coordinate. Once the coordinate system is
chosen all the equations and the boundary conditions of the
problem should be rewritten in this coordinate system. The
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Fig. 1. Diffraction by a convex body. Fock domain – red, Fresnel penumbra
– blue, creeping waves – green.

characteristics of the surface and the incident field, such as
radius of curvature ρ of the geodesics, their divergence h,
radius of transverse curvature ρt and the torsion appear in the
above equations.

The next step in this procedure is to choose the scales of the
coordinates. One should scale the coordinates in a way such
that the derivatives of the field by the scaled coordinates can
be considered as quantities that are on the order of unity. In
our case, the field depends on s in the form of a dominant
factor eiks, multiplied by a slower varying function called
the attenuation function. To define the scales one can proceed
in one of two ways. One possibility is to search for these
scales in the solution of a canonical problem, which can be
solved exactly. The other possibility is to look at the terms
in the equations and to attempt to choose terms that should
be considered as the principal ones. We will illustrate this
second approach by considering the diffraction by a cylinder
as an example. For this 2D problem, Maxwell’s equations are
reduced to the Helmholtz equation for scalar waves.

Let S be the convex boundary of a body illuminated by a
wave field given by its ray expansion. Figure 1 presents the
two-dimensional cross-section of the field of rays. On the line
C on the surface S (see Fig. 1) the rays of the incident field are
tangent to S. Such rays are called limiting rays. The surface is
illuminated on one side of C, that is it is reached by incident
rays and each incident ray is reflected from S. No geometrical
rays reach the surface on the other side.

As mentioned above, our next step is to we introduce the
representation

U = exp(iks)u(s, n), (1)

and assume that the new unknown function u varies more
slowly with the s coordinate than does the exponential multi-
plier. We substitute the above representation into the equation
and rewrite it in terms of the coordinates (s, n) as

2ik
∂u
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+
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u = 0. (2)

Next, we introduce the stretched coordinates

kαs, kβn

where the exponents α and β are unknowns as yet. We
assume only that α < 1 (otherwise u varies with s faster than
the exponential factor in (1)). This assumption enables us to
exclude the term ∂2u/∂s2 from principal terms and to consider
it as a correction to the term 2ik∂u/∂s. Further, to be able to
fix the boundary condition at n = 0 and radiation condition
at n = +∞ the second-order derivative w.r.t. n should be
included in the principal-order terms. This implies that β > 0
and the terms with ∂u/∂n are smaller than ∂2u/∂n2. Finally,
the n2 terms are smaller than similar terms with n in the first
power. In view of all this the following three terms may be
considered to be the principal terms in equation (2) :

∂2u

∂n2
, 2ik

∂u

∂s
, and 2k2

n

ρ
u. (3)

One should verify that all the terms in (3) are principal-
order terms, because otherwise the boundary value problems
involving n would have no solution. Preserving all three terms
yields the well known Leontovich parabolic equation :

2ik
∂u

∂s
+
∂2u

∂n2
+ 2k2

n

ρ
u = 0. (4)

Simultaneously, we have determined the size of the Fock
domain. Parabolic equation (4) fixes the scales α = 1/3 and
β = 2/3. Thus, Fock domain is as small as k−1/3 along the
surface, and as small as k−2/3 in the direction of the normal.
For the more complex case of 3D problem, the parabolic
equation remains the same, since within such a small domain
any general surface is almost cylindrical.

B. Solution of the parabolic equation

In the Fock domain, we can usually replace ρ(s, α) by its
value ρ0(α) on the light-shadow boundary, since the Fock
domain is small and ρ(s, α) ≈ ρ0(α). Then the coefficients of
the parabolic equation become constant, and it can be solved
by means of Fourier transform to get :

u =

+∞∫
−∞

eiσζ û(ν, ζ)dζ, (5)

where we have introduced the stretched coordinates

σ = m
s

ρ0
, ν = 2m2 n

ρ0
, m =

(
kρ0
2

)1/3

. (6)

For û, we obtain the Airy equation

∂2û

∂ν2
+
(
ν − ζ

)
û = 0. (7)

We use the Airy functions v and w1 in Fock notation.
The function w1 is chosen because it satisfies the radiation
condition representing only the waves which propagate away
from the surface. The solution can be written as an integral

u =

+∞∫
−∞

eiσζc(ζ)
(
v(ζ − ν) +R(ζ)w1(ζ − ν)

)
dζ. (8)
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The part of the solution which contains the Airy function
v(ζ − ν) corresponds to the incident field and the part of the
solution which contains the Airy function w1(ζ−ν) represents
the secondary field. The coefficient R is determined from the
boundary condition. Thus from the Neumann condition, for
the TM polarization we find

RTM(ζ) = − v̇(ζ)

ẇ1(ζ)
, (9)

where dot denotes the derivative. For the TE polarization, by
imposing the Dirichlet condition we find that

RTE(ζ) = − v(ζ)

w1(ζ)
. (10)

The amplitude c(ζ) remians undetermined as yet, and it
enables us to match the local asymptotics in the Fock domain
to the incident field. For that we consider the incident wave and
represent it in the stretched coordinates (σ, ν) of the boundary
layer. For example, for the case of an incident plane wave we
have

ui = ui(C) exp

{
i

(
σν − 1

3
σ3

)}
.

By inserting this expression in (8), we obtain the integral
equation for the amplitude c(ζ), which reads

+∞∫
−∞

eiσζc(ζ)v(ζ − ν)dζ = ui(C) exp

{
i

(
σν − 1

3
σ3

)}
.

(11)
Applying the Fourier transform we find

c(ζ) = ui(C)
1√
π
.

If σ is large, one can compute the integrals by using
the residue theorem. Then, the contribution of every residue
matches to the creeping waves which propagate along the
surface of the body.

C. Induced currents: leading- and higher-order terms

If we take the observation point in formula (8) on the
surface, i.e., if we let ν = 0, we obtain the well known
expression for the field associated with the TE-polarized wave

E = U i(C)
eiks√
π

+∞∫
−∞

eiσζ
dζ

w1(ζ)
. (12)

Similarly, for the induced current of the TM wave, we get

J = U i(C)
eiks√
π

+∞∫
−∞

eiσζ
dζ

ẇ1(ζ)
. (13)

Although (12) and (13) only contain the leading order
terms of the asymptotics, and the asymptotic decomposition is
carried out by using the inverse powers of m, i.e., fractional
powers of kρ, they yield a rather accurate approximation
for the field even when the frequency is not too high. We
can verify this from Fig. 2 of [3] (the original is in [4]),
where the currents induced on a circular cylinder, whose

diameter is equal to the wavelength, have been presented. It
is worthwhile to point out that in the diffraction problem the
current is formed by the interference of two waves. One travels
in the clockwise direction from the light-shadow boundary,
while the other originates from the light-shadow boundary on
the opposite side of the cylinder and travels in the counter-
clockwise direction. Both of these waves are attenuated, but
as the diameter of the cylinder is not large, the wave which
encircles the shadowed side, does not travel a large distance,
and its contribution remains noticeable in the form of the
oscillations of the field amplitude.

For an arbitrary (non-cylindrical) 3D surface, the derivations
of the principal-order term are exactly as presented above.
The second surface coordinate α is not stretched in the Fock
domain and derivatives with respect to this coordinate are
not involved in the higher-order operator. Because of this, the
leading-order term of the asymptotics is not affected by the
transverse curvature of the body. However the induced currents
are different if the body is a sphere, and the agreement between
the real currents and the asymptotics is not so good as it is
for the case of the cylinder. A comparison with the numerical
results presented in [5] defines the domain of applicability
where the results from the Fock formulas suffer from less
than 5% error, provided kρ > 20. Attempts to improve the
situation entail the computation of the next-order terms of
the asymptotics, and we mention here only three papers that
have attempted to do this. The first one is by Hong [6],
who has derived the second-order term of the asymptotics,
both for the fields in the Fock domain and for creeping
waves in the deep shadow. He has considered an arbitrary
(with some restrictions) smooth convex surface with ideal
boundary conditions. For the impedance boundary conditions,
the second-order term in the asymptotics of creeping waves
was found in [7]. It was possible to find not only the second-
order term for the case of a sphere, but the entire series
representation [8]. However, the latter result differs by a
factor of 2 from the one by Hong. Inspite of the possibility

amplitude

phase

Fig. 2. Currents on a perfectly conducting circular cylinder with the diameter
equal to the wavelength. Solid line – exact, dashed – Fock asymptotics (13).
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to use the second- and higher-order terms, the lower bound
of frequency domain where the asymptotic formulas yield
sufficiently accurate representations for the currents on the
sphere, have remained almost unchanged. This leads us to
conclude that the higher-order terms do not enlarge the domain
of applicability of the first-order representation.

III. MODERATELY AND STRONGLY ELONGATED BODIES

For elongated objects, such as spheroids, the lower fre-
quency bound of the domain where Fock formulas can be
used shifts to kb > 100 and larger. We can deduce this
by comparing the principal-order term of the asymptotics
with numerical results given in [9]. Figure 3 presents the
induced currents on the spheroid with semiaxes a = 0.5m
and b = 1.25m, at frequencies 1, 2 and 4 GHz and the
asymptotics. We use the stretched coordinate σ in which
the “size” of the spheroid changes with frequency, but the
asymptotics remain unchanged. Figure 3 shows that the Fock
formula underestimates the values for the currents. This is
consistent with the observation that the edges or surfaces
with high transverse curvature decrease the attenuation of
the creeping waves. That is, large transverse curvature or
sharp edges promote the propagation of waves, as exemplified
by the following cases. While studying diffraction by disks
Senior [10] observed, in 1969, that a wave propagates with
low attenuation along the rim of the disk. The Sommerfeld
wave [11] propagates with only logarithmic attenuation along
conducting wires. Finally, a source on a cylinder excites a
wave that propagates along the generatrix of the cylinder, and
only decreases as the inverse of the square root of the distance
[12].

The impact of transverse curvature on the propagation
constant of creeping waves, and more specifically, the case
of creeping wave on elongated bodies, has been analyzed in
[13] (see also [14]). In the spirit of the work of Engineer
et al. [15], who have studied the problem of diffraction by
2D slender bodies, it was assumed that besides the usual
asymptotic parameter kρ, the geometrical characteristics of

-2 -1 0 1 σ
0

1

2

|J |

1

2

3

Fig. 3. Induced current amplitude on the spheroid with semiaxes b = 1.25 m,
a = 0.5 m at frequencies 1, 2 and 4 GHz (curves 1,2,3) and the asymptotic
approximation by Fock (dotted curve).

the body form another large parameter Λ = ρ/ρt, with
which the asymptotic parameter may compete. Analysis of
the scales shows that reorganization of the usual creeping
waves asymptotics as well as the asymptotics in Fock domain
takes place when Λ reaches the order of m, i.e., becomes
as large as (kρ)1/3. This case was referred to in [13] as the
case of moderately elongated body. For this case, the leading
term of the asymptotics of creeping waves starts to depend
on the transverse curvature, and transverse curvature on the
order of (kρ)1/3/ρ changes the creeping waves asymptotics,
although these changes are not too significant. The structure
of the asymptotic expansion remains relatively unchanged,
though some terms in the recurrent system of the boundary-
value problems move from the second-order corrections to the
first-order. This results in an aditional multiplier defining the
amplitude of creeping waves. This result can be simulated by
introducing an effective impedance :

Z =
i

2kρt
(14)

which can evidently be used in the Fock domain. The asymp-
totics of induced currents on a moderately elongated body
improves the approximation, as may be seen from Fig. 4.
However, the currents still remain underestimated.

The strongly elongated body was defined in [13] as the body
in which the transverse curvature is on the order of k2/3ρ−1/3,
implying that Λ ∼ m2. The asymptotics of creeping waves on
such a body changes significantly and leads to the equation
below, which is more complex (see [13]) than the Airy
equation (7)

∂2û

∂ν2
+

3

ν + κ

∂û

∂ν
+
(
ν + κ− ζ

)
û = 02, (15)

where
κ = 2m2 ρt

ρ
. (16)

For the case of a strongly elongated body, the parameter κ is on
the order of unity and is the main parameter which describes
the effect of the transverse curvature. The formulas reduce
to the effective impedance approach of moderately elongated
case, if we let the parameter κ to be small. Equation (15) is
a biconfluent Heun equation [16] which has 4 singular points,
three of which coalesce at infinity, while the last one goes to
zero. The singularity of ν = −κ in (15) corresponds to the
points on the axis of transverse curvature and it is convenient
to introduce a “shifted” normal ν′ = ν + κ, especially for
the case of a body of revolution. Then the surface equation
becomes ν′ = κ. In order to be able to write the asymptotics of
creeping waves on a strongly elongated body, it is necessary to
impose some restrictions on the variation of both the curvature
and the transverse curvature; specifically it is necessary to
assume that both ρ and ρt vary very slowly.

Attempts to generalize the approach to Fock domain (almost
the only published result we can locate is [17]) were neither
mathematically rigorous nor satisfactory from the point of
view of providing a good approximation for the currents.
Although the effect was apparently described correctly at
the qualitative level, agreement with the results of numerical
computation was less than satisfactory.
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Fig. 4. Moderately elongated body approximation for diffraction by the spheroid with a = 0.5m, b = 1.25m at 1 GHz (left) and 2 GHz (right). Numerical
results – solid, moderately elongated approximation – dashed, Fock approximation – dotted.

It was understood later that the restrictions imposed on
the curvature variation were inconsistent with the geometry.
Indeed for a very elongated body, such as a prolate spheroid
with Λ = O(m2), which is illuminated along its axis by
an incident wave, the entire object is not located in the
deep shadow region, but in the light-shadow transition zone.
Therefore it is not correct to replace it with an object with
constant ρ and ρt.

All the above-mentioned facts led to the conclusion, which
was recently rediscovered in [18], that a different technique
is neded to handle the case of strongly elongated body. To
address this problem, a new technique was introduced in 2009
[19], [20] which is currently being developed. The rest of the
paper describes this new approach.

IV. DIFFRACTION BY A STRONGLY ELONGATED BODY

A. Boundary layer, scales and coordinates

Let the elongated body have the symmetry of revolution
and let its main radii of curvature at the widest cross-section
be ρ and ρt. We assume that the body is spheroid-like, i.e.,
its surface deviates from the surface of the spheroid by an
asymptotically small distance. The radii of curvature define
the semiaxes of this spheroid as

a = ρt, b =
√
ρρt. (17)

The assumption that the body be strongly elongated in terms
of the semiaxes can be expressed as

χ ≡ ka2

b
= O(1). (18)

We refer to the parameter χ as the elongation parameter. It is
related to the parameter κ, introduced earlier, via the formula

χ = 2−1/2κ3/2.

b
a

-z

-y

ϑ-----

Fig. 5. Geometry of the problem.

We use the spheroidal coordinates (ξ, η, ϕ) related to the
cylindrical (r, z, ϕ) ones, where the z axis is the axis of the
body (see Fig. 5), via the formulas

z = pξη, r = p
√
ξ2 − 1

√
1− η2, (19)

where p =
√
b2 − a2 is the semi-focal distance.

In order to choose the scales, we initially consider the case
of a plane wave incident along the axis of the body, and make
some generalizations later. If the body were not elongated,
we would use Fock asymptotics described in Section II. The
size of Fock domain is on the order (kρ)−1/3 in the direction
of the wave incidence, while it is on the order (kρ)−2/3

along the normal direction. We see that if we maintin these
orders, then the entire strongly-elongated body would be inside
the Fock domain, implying that we should not stretch the
angular spheroidal coordinate η, but should do so with the
radial coordinate ξ. It is convenient to replace ξ with another
coordinate, which we denote by τ , such that its value measured
from the axis would be on the order of unity on the surface.
We introduce such a coordinate by using the formula

τ = 2χ−1kb(ξ − 1). (20)

So that τ = 0 on the axis while it equals 1 on the surface.
The coordinates (η, τ) serve as the coordinates of the boundary
layer, and they replace the usual σ and ν coordinates of the
asymptotics of Fock.
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Keeping in mind that a� b, we can simplify the formulas
for the boundary-layer coordinates to r = a

√
1− η2

√
τ ,

z = bη +
a2

2b
(τ − 1)η.

(21)

This change does not influence the asymptotic procedure
which pertains to the leading order, although may affect the
higher-order corrections, which we ignore however.

For an ordinary (not elongated) body, the use of the
parabolic equation method suggests that the factor eiks be
separated. Computing the arc-length s on the spheroid is not
so easy; however, we can use a simpler factor eikpη or eikbη if
we again exploit the fact that a� b. These factors agree with
eiks up to the terms on the order of unity, and we can choose
any of them. The formulas become a little more compact if
we choose eikpη , which we simplify to

exp

(
ikbη − i

2
χη

)
. (22)

Once we have chosen the coordinates and the factor men-
tioned above, we can go ahead and generalize the problem,
by allowing the wave to be incident at an arbitrary angle with
respect to the axis. However, the angle should be small, such
that the phase shift corresponding to the trajectory of the wave
along the geodesics on the surface differ from the phase shift
of the multiplier (22) by no more than a quantity on the order
of unity, implying that the angle of incidence ϑ should be such
that

β ≡
√
kbϑ = O(1). (23)

Dimensionless quantities χ and β, that are on the order of
unity, are the parameters of the asymptotic formulas, which
we will derive below.

B. Integral representation of the field

We search for the solution of Maxwell’s equations in the
form of a Fourier series in terms of the angle ϕ. For the part
of the electromagnetic field which depends on the angle in
the form ei`ϕ, we express all the components of electric and
magnetic vectors via the Eϕ and Hϕ components. Below we
denote the Fourier harmonics of these components as E` and
H`. The functions E` and H` are solutions of the system
of differential equations, which is cumbersome to handle,
although it is standard in spheroidal coordinates. Separation
of variables is possible only if ` = 0 [21], and it leads to a
representation of the field that utilizes spheroidal functions.

We now extract the dominant factor in (22), and neglect
the lower-order terms. For the leading order in terms of the
asymptotic parameter kb, we obtain the system of parabolic
equations. It can be easily split into two independent equations
for the new unknowns as follows :

P`(τ, η) =
E` + iH`

2
, Q`(τ, η) =

E` − iH`

2
. (24)

These unknowns satisfy the equations

L`−1P` = 0, L`+1Q` = 0, (25)

Ln = τ
∂2

∂τ2
+

∂

∂τ
+
iχ

2

(
1− η2

) ∂
∂η

+
1

4

(
χ2τ − n2

τ
− χ2

(
1− η2

))
. (26)

The differential equations in (25) are considered together with
the boundary conditions. For the case of a perfectly conducting
surface, the boundary conditions require that the tangential
components of the electric vector be zero on the surface, which
leads to the conditions

P`(1, η) +Q`(1, η) = 0, (27)

∂P`(1, η)

∂τ
+

1

2
P`(1, η)− ∂Q`(1, η)

∂τ
− 1

2
Q`(1, η) = 0. (28)

We also set the radiation conditions at infinity for the sec-
ondary field.

Parabolic operator (26) is amenable to a separation of
variables. Elementary solution of the equation LnU = 0 can
be written in the form

Un =
1

√
τ
√

1− η2

(
1− η
1 + η

)µ
Fµ,n/2 (−iχτ) , (29)

where Fµ,n/2(g) is a solution of the Whittaker equation [22]

F ′′ +

(
−1

4
+
µ

g
+

1− n2

4g2

)
F = 0.

We choose the Whittaker functions Mµ,n/2(−iχτ) for the
incident field in (29). These functions are regular at τ =
0, which results in solutions that are regular in the entire
space. For the secondary field, we choose Whittaker functions
Wµ,n/2(−iχτ) which correspond to solutions satisfying the
radiation condition in terms of τ .

We combine P` and Q` of the elementary solutions (29)
in the form of integrals over the separation parameter µ. In
these representations we include amplitude factors that are
dependent on µ. To define the path of integration, and the
amplitude factors, we consider below the incident field first.

C. Representation of the incident field

An arbitrarily polarized plane electromagnetic wave can be
represented as a sum of transverse electric (TE) and transverse
magnetic (TM) waves. We define the transverse direction with
respect to the plane of incidence and assume that it coincides
with the Y OZ plane in Cartesian coordinates (see Fig. 5). The
plane of incidence is not defined for the axial case, but TE and
TM waves can still be defined with respect to the plane Y OZ.

Let us consider the TE case first. We set a unit amplitude
for the incident TE wave and express its E and H fields as

Ei = exp (ikz cosϑ+ ikx sinϑ) ey, (30)

Hi = exp (ikz cosϑ+ ikx sinϑ) {− cosϑex + sinϑez} ,
(31)

where ex, ey and ez are the unit vectors of Cartesian coordi-
nates. Next, we represent the incident wave in the form of a
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Fourier series as follows :

Eiϕ = exp (ikz cosϑ)

{
iJ1 (kr sinϑ)

+ 2

∞∑
n=1

in−1J̇n (kr sinϑ) cos(nϕ)

}
, (32)

Hi
ϕ=2 exp (ikz cosϑ) cosϑ

∞∑
n=1

in−1n
Jn (kr sinϑ)

kr sinϑ
sin(nϕ).

(33)
Each of the harmonics of (32), (33) can be expanded in an

asymptotic series in terms of inverse powers of kb. The leading
order terms satisfy the parabolic equations (25). Therefore
the leading order terms in the asymptotic representation of
(32), (33) can be represented as a combination of elementary
solutions (29) in which, as explained above, we should include
the Whittaker function Mµ,n/2(−iχτ). Expressions for the
harmonics in (32) and (33) contain the derivatives of Bessel
functions and the ratios of Besel functions to their agument.
However both these expressions can be reduced to just the
Bessel functions with the help of the formulas :

2J̇n(g) = Jn−1(g)− Jn+1(g),

2n
Jn(g)

g
= Jn−1(g) + Jn+1(g)

from [22]. Therefore the problem of finding the leading-order
representation of the incident wave as a combination of the
elementary solutions (29) reduces to that of finding such a
representation for the functions

exp (ikz cosϑ) Jn (kr sinϑ) .

When substituting here the expressions for the coordinates r
and z we replace the trigonometric functions of small ϑ by
their approximations : sinϑ ≈ ϑ and cosϑ ≈ 1 − 1

2ϑ
2. By

doing this, we obtain the equation

1
√
τ
√

1− η2

∫ (
1− η
1 + η

)µ
An(µ)Mµ,n/2(−iχτ)dµ =

= V (η, τ). (34)

Both the left-hand as well as the right-hand side of this
equation satisfy the parabolic equation with operator Ln.
Therefore, if we find the amplitude An(µ) for any fixed τ ,
it will satisfy (34) for all other values of τ . This important
property simplifies the problem of finding the solution. First,
we rewrite (34) in the form

1
√
χτβ

√
1− η2

∫ (
1− η
1 + η

)µ
Ωn(µ)Mµ,n/2(iβ2)×

×Mµ,n/2(−iχτ)dµ = V (η, τ), (35)

where

An(µ) =
Mµ,n/2(−iβ2)
√
χ β

Ωn(µ). (36)

We note that τ is presented in (35) only as the product χτ .
Thus, since Ωn does not depend on τ , it does not depend on
χ either. Further, since χτ and −β2, presented in (35), are

symmetric, Ωn does not depend on β either. This enables us
to find Ωn for any chosen χτ and β. Equation (35) takes the
simplest form if β and χτ both → 0. Computing this limit
and using the asymptotics

Mµ,n/2(g) ∼ g(1+n)/2, g → 0, (37)

Jn(g) ∼ 1

n!

(g
2

)n
, g → 0

we reduce equation (35) to∫ (
1− η
1 + η

)µ
Ωn(µ)dµ =

1

2nn!

(
1− η2

)(n+1)/2
. (38)

We remind that we have not yet chosen the path of inte-
gration. So if we choose it now as the imaginary axis and
set

η =
s− 1

s+ 1
,

equation (38) reduces to
+i∞∫
−i∞

s−µΩn(µ)dµ =
2

n!

( √
s

s+ 1

)n+1

.

We identify the left-hand side of this equation with inverse
Mellin transform and find

Ωn(µ) = − i

π(n!)2
Γ

(
n+ 1

2
+ µ

)
Γ

(
n+ 1

2
− µ

)
. (39)

Using (39) we can write the incident plane TE wave in the
form :

Ei =
exp(ikbη − iχη/2)√

1− η2β√χτ

+∞∫
−∞

(
1− η
1 + η

)it
×

×

{
Ω1(it)Mit, 12

(−iχτ)Mit,1/2(iβ2)

+

+∞∑
`=1

i` cos(`ϕ)
[
Ω`−1(it)Mit, `−1

2
(−iχτ)Mit, `−1

2
(iβ2)

−Ω`+1(it)Mit, `+1
2

(−iχτ)Mit, `+1
2

(iβ2)
]}

dt, (40)

Hi =
exp(ikbη − iχη/2)√

1− η2β√χτ

+∞∫
−∞

(
1− η
1 + η

)it
×

×
+∞∑
`=1

i` sin(`ϕ)
[
Ω`−1(it)Mit, `−1

2
(−iχτ)Mit, `−1

2
(iβ2)

+Ω`+1(it)Mit, `+1
2

(−iχτ)Mit, `+1
2

(iβ2)
]
dt. (41)

The representations for the TM plane wave

Ei = exp (ikz cosϑ+ ikx sinϑ) {cosϑex − sinϑez} ,

Hi = exp (ikz cosϑ+ ikx sinϑ) ey

can be derived analogously. The electric field is given by the
expression (41) and the magnetic field can be expressed as in
(40) with the opposite sign.

7
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D. Boundary conditions and the induced currents

The representations for the secondary fields are similar to
(40) and (41), the only change being the replacement of Whit-
taker functions Mit,n(−iχτ) with the functions Wit,n(−iχτ),
multiplied by a function of the integration variable t. Note that
the Whittaker functions Wit,n(−iχτ) are chosen because they
satisfy the radiation condition. For the TE case we have, in
accordance with (24) and (25),

Es =
exp(ikbη − iχη/2)√

1− η2β√χτ

+∞∫
−∞

(
1− η
1 + η

)it
×

×

{
Ω1(it)T0(t)Wit, 12

(−iχτ)Mit, 12
(iβ2)

+

+∞∑
`=1

i` cos(`ϕ)
[
Ω`−1(it)R`(t)Wit, `−1

2
(−iχτ)Mit, `−1

2
(iβ2)

−Ω`+1(it)T`(t)Wit, `+1
2

(−iχτ)Mit, `+1
2

(iβ2)
]}

dt,

(42)

Hs =
exp(ikbη − iχη/2)√

1− η2β√χτ

+∞∫
−∞

(
1− η
1 + η

)it
×

×
+∞∑
`=1

i` sin(`ϕ)
[
Ω`−1(it)R`(t)Wit, `−1

2
(−iχτ)Mit, `−1

2
(iβ2)

+Ω`+1(it)T`(t)Wit, `+1
2

(−iχτ)Mit, `+1
2

(iβ2)
]
dt. (43)

The functions R`(t) and T`(t), introduced herein, play the role
of the reflection coefficients in some sense, and can be found
when the sum of the incident and secondary fields is substi-
tuted in the boundary conditions (27), (28). Evidently, each
of the harmonics satisfies the boundary conditions separately.
For the TE case, we find (for details of the derivations see
[23]) :

T0 = −
Mit,1/2(−iχ)

Wit,1/2(−iχ)
, (44)

T` = −Y`−1,`+1

Z`
− 1

Z`

W(`−1)/2

C`
, ` = 1, 2, . . . (45)

R` = −Y`+1,`−1

Z`
− 1

Z`
W(`+1)/2C`, ` = 1, 2, . . . (46)

where

C` =
`2 + 4t

2`2(`+ 1)2
Mit,(`+1)/2(iβ2)

Mit,(`−1)/2(iβ2)
,

Yn,m = Wit,n2
(−iχ)Ṁit,m2

(−iχ)

+ Ẇit,n2
(−iχ)Mit,m2

(−iχ).

Zn = Wiλ,n−1
2

(−iχ)Ẇiλ,n+1
2

(−iχ)

+ Ẇiλ,n−1
2

(−iχ)Wiλ,n+1
2

(−iχ)

and Wn is the Wronskian of Whittaker functions [22]

Wn = Ṁit,n(g)Wit,n(g)−Mit,n(g)Ẇit,n(g)

=
Γ(1 + 2n)

Γ(1/2 + n− it)
. (47)

For the TM case, the formulas are similar. For this case,
Eϕ is given by the right-hand side of (43) while Hϕ is given
by the right-hand side of (42), with the common multiplier
(−1). The reflection coefficients in these two formulas are as
follows:

T0 = −
Ṁit,1/2(−iχ)

Ẇit,1/2(−iχ)
(48)

and the other coefficients T`, ` = 1, 2, . . . and coefficients R`
are defined by formulas (45) and (46), respectively, but with
C`±1 replaced with −C`±1.

The expressions given in (40) through (43) describe the
electromagnetic fields in the boundary layer near the surface
of the spheroid. In contrast to the classical Fock asymptotics,
they do not have locality with respect to the transverse surface
coordinate. Indeed, by restricting our analysis to the bodies
of revolution we obtained the Fourier series in terms of the
transverse angular coordinate ϕ. In other respects, the structure
of these set of formulas has some similarity with the classical
asymptotics of the field in the Fock domain. For example, the
Fourier integral in ζ in the classical asymptotics is replaced
by another integral transform, and the Airy function v(ζ − ν)
which represents the incident plane wave in (8) is replaced
with the Whittaker function Mit,n(−iχτ). The Airy function
w1(ζ − ν) which represents the secondary wave outgoing
from the surface is replaced with the Whittaker function
Wit,n(−iχτ). The reflection coefficients (9) and (10) became
more compex and are given by the expressions in (44) through
(46), and (48).

The induced currents J = n×H|τ=1 can be found by using
(40) through (43), with its principal component directed along
η. After simple manipulations we can obtain

J = eikbηA(η, χ, β, ϕ), (49)

where

ATE(η, χ, β, ϕ) = − 2

π

e−iχη/2√
1− η2√χβ

×

×
+∞∫
−∞

(
1− η
1 + η

)it ∞∑
`=1

i`−1 sin(`ϕ)

(`+ 1)!Z`
×

×
{

Γ

(
`

2
+ 1 + iλ

)
Mit, `+1

2
(iβ2)Wit, `−1

2
(−iχ)

+ `(`+ 1)Γ

(
`

2
+ it

)
Mit, `−1

2
(iβ2)Wit, `+1

2
(−iχ)

}
dt

in the TE case.
It is also convenient to represent the special function ATE

in terms of the Coulomb wave functions F and H+ [22], and
to use the program developed in [24] for their computation.

8
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Using the formulas

Mit, `+1
2

(iβ2)

=
2ieiπ`/4+πt/2Γ(`+ 2)√

Γ(`/2 + 1 + it)Γ(`/2 + 1− it)
F `

2

(
t,
β2

2

)
,

Wit, `−1
2

(−iχ)

= −ieiπ`/4+πt/2
√

Γ(`/2 + it)

Γ(`/2− it)
H+

`
2−1

(
−t, χ

2

)
we obtain

ATE =
−8e−iχη/2

π
√

1− η2√χβ

+∞∫
−∞

(
1− η
1 + η

)it ∞∑
`=1

i` sin(`ϕ)×

×
F `

2

(
t, β

2

2

)
H+

`−2
2

(
−t, χ2

)
+ F `−2

2

(
t, β

2

2

)
H+

`
2

(
−t, χ2

)
H+

`−2
2

(
−t, χ2

)
Ḣ+

`
2

(
−t, χ2

)
+Ḣ+

`−2
2

(
−t, χ2

)
H+

`
2

(
−t, χ2

)dt.
(50)

Similarly, for the TM case we can obtain

ATM(η, χ, β, ϕ) =
8e−iχη/2

π
√

1− η2√χβ
×

×
+∞∫
−∞

(
1− η
1 + η

)it{
1

2

F0

(
t, β

2

2

)
Ḣ+

0

(
−t, χ2

) +

∞∑
`=1

i` cos(`ϕ)×

×
F `

2

(
t, β

2

2

)
H+

`−2
2

(
−t, χ2

)
− F `−2

2

(
t, β

2

2

)
H+

`
2

(
−t, χ2

)
H+

`−2
2

(
−t, χ2

)
Ḣ+

`
2

(
−t, χ2

)
+Ḣ+

`−2
2

(
−t, χ2

)
H+

`
2

(
−t, χ2

)}dt.
(51)

It is worth noting that one should consider the limit as β →
0 for the case of axial incidence. Only the Coulomb wave
function F−1

2
has a non-zero contribution in this case and the

special functions ATE and ATM simplify to

ATE(η, χ, 0, ϕ) = A(η, χ) sinϕ,

ATM(η, χ, 0, ϕ) = A(η, χ) cosϕ,

where

A(η, χ) = − 4e−iχη/2

√
πχ
√

1− η2

+i∞∫
−i∞

(
1− η
1 + η

)it
e−πt/2√
cosh(πt)

×

×
H+

1/2

(
−t, χ2

)
dt

H+
− 1

2

(
−t, χ2

)
Ḣ+

1
2

(
−t, χ2

)
+Ḣ+

− 1
2

(
−t, χ2

)
H+

1
2

(
−t, χ2

) .
(52)

The expressions in (50), (51) and (52) are more cumbersome
in comparison to the classical Fock functions (13). However,
with the help of the program from [24] their computation are
relatively straightforward. The integrals converge quite rapidly
and only a small interval contributes to the integral. As shown
in [9] the function A reduces to the Fock function (13), when
χ→ +∞.

E. Backward wave
The total field in the boundary layer near the surface is

the sum of the primary wave running in the positive direction
of z together with waves that are formed when the primary
wave encircles the ends of the spheroid. The asymptotics in
(50) and (51) only describe the primary wave and are valid in
the middle part of the spheroid. The reflected backward wave
representation in the boundary layer can be written by noting
that the backward wave runs in the opposite direction and that
there is no incident backward wave. For the case of the axial
incidence, considered in [25], the representation of the current
corresponding to the backward wave is given by

JTE
b = e−ikbηB(η, χ) sinϕ, JTM

b = e−ikbηB(η, χ) cosϕ,

where

B(η, χ) = − 4eiχη/2

√
πχ
√

1− η2

+i∞∫
−i∞

(
1 + η

1− η

)it
e−πt/2√
cosh(πt)

×

×
H+

1/2

(
−t, χ2

)
r(t) dt

H+
− 1

2

(
−t, χ2

)
Ḣ+

1
2

(
−t, χ2

)
+Ḣ+

− 1
2

(
−t, χ2

)
H+

1
2

(
−t, χ2

) .
(53)

The special function B is defined by the expression similar
to the one given in (52) in which we change the sign of η
and introduce an additional multiplier r(t). The latter may
be interpreted as the reflection coefficient from the tip of the
spheroid. To find this multiplier one needs to construct the
field in the vicinity of the spheroid tip, that is for η ≈ 1, and
match the sum J + Jb with that field. The difficulty is that
there is no asymptotic parameter in the region near the tip of
the spheroid. Indeed, the radius of curvature of the surface at
the tip is ρe = a2/b. Therefore the parameter kρe, which is
equal to the elongation parameter χ, is on the order of unity.
However, there is a way to circumvent this difficulty, as shown
in [25], which is based on the observation that a very elongated
ellipse, such as a trajectory of a point mass in the central field
of the gravity, is well approximated by a parabola. Hence, if
we replace the surface of the spheroid by the surface of the
paraboloid defined by the equation

r2 = 2
a2

b

(
b− z

)
,

we can use the exact solution of Fock [2] to approximate the
field. Matching this Fock solution to the sum of the forward
and backward waves allows the reflection coefficient to be
found

r(t) = ie2ikb−iχ
Γ(1/2 + it)

Γ(1/2− it)

√
2t− i
2t+ i

(4kb)−2it. (54)

We note that the asymptotic parameter kb is presented in
(54) and, rigorously speaking, the formula requires further
asymptotic simplifications in the process of computing the
integral in (53), as the contribution of the residues in the zeros
of the denominator

H+
− 1

2

(
−t, χ

2

)
Ḣ+

1
2

(
−t, χ

2

)
+ Ḣ+

− 1
2

(
−t, χ

2

)
H+

1
2

(
−t, χ

2

)
= 0. (55)

9
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TABLE I
TEST PROBLEMS PARAMETERS.

no. f (GHz) a (m) b (m) χ kb

1 1 0.5 1.25 4.19169 26.19806
1 2 0.5 1.25 8.38338 52.39613
2 1 0.5 1.76776695 2.96397 37.04966
2 2 0.5 1.76776695 5.92795 74.09931
3 1 0.3125 1.39754249 1.46452 29.29032
3 2 0.3125 1.39754249 2.92903 58.58065

Solutions of equation (55) lie in the lower complex half-plane
of t (see [20] where solutions of (55) are analyzed) and the
main contribution to (53) is due to the residue in the pole
with the maximal imaginary part of t. However, finding the
solutions of the dispersion equation (55) is not easy, and we
compute the integral directly instead. Moreover, we expect that
the formulas can also be applied in the case of values of kb,
that are not too large, say kb ≈ 3, when the approximation
with one residue fails.

To illustrate the approximating nature of the asymptotic
formulas we present the Figs. 6 through 8 taken from the
paper in [25]. These figures present the currents induced by
the axially incident plane wave on the surface of perfectly
conducting spheroids. The trigonometric multiplier of ϕ is not
considered. The parameters of the test examples are presented
in Table I. The results computed by the Finite Element Method
(FEM) are plotted in red and the asymptotic results are shown
in blue. We see that the agreement is quite good and it is
better for spheroids with larger elongations. This was expected,
because the fact that spheroid is strongly elongated was used,
when deriving our asymptotic formulas, in all the derivations
and the terms that are small for elongated spheroids were
neglected.

For ϑ 6= 0, backward wave asymptotics can be found by
using the same approach, but this has not been done, as yet.

F. The far field asymptotics

Since we have been able to obtain a good approximation
of the induced currents, the use of the Stratton-Chu formula
in [26] enables us to derive the the scattered fields. Since the
tangential components of the electric vector E are zero on the
surface of perfect conductor, this formula reduces to

Hs = − 1

4π

∫∫
J×∇GdS, (56)

where J is the total induced current, × denotes the vector
product and G is the scalar Green’s function

G(r, r0) =
eik|r−r0|

|r− r0|
.

Moving the observation point r0 in (56) to infinity along the
ray defined by the spherical coordinates ϑ0 and ϕ0 we compute
the limit under the integration sign to obain the formula for
the far field amplitude of the magnetic field, which reads

Ψ = − 1

4π

∫∫
J×∇ψdS. (57)

Here ψ is the far field amplitude of G. In view of the
reciprocity principle, the formula for ψ in the boundary layer
near the surface coincides with the expression for the field of a
plane wave incident from the opposite direction. Consequently,
we need to replace η by −η and ϕ by π − ϕ in (34). This
leads to the asymptotic representations

ψ =
1

2
ψ0 +

+∞∑
m=1

ψm cos[m(ϕ− ϕ0)], (58)

ψm =
2im+1e−ikbη+iχη/2√

1− η2
√
τ

×

×
+∞∫
−∞

(
1 + η

1− η

)is
Am(is, β0)Mis,m2

(−iχτ)ds, (59)

where β0 =
√
kbϑ0 is the scaled observation angle, and the

amplitudes Am are defined by (36) and (39).
Our goal is to find the leading order asymptotics of Ψ.

Towards this end we substitute the asymptotics of the currents
in (57) from the previous section.

We use the Cartesian components of the vectors, but perform
the integration in the coordinates of the boundary layer, where

dS = b dη a
√

1− η2 dϕ.

The expression (57) for the x- and y-componets read

Ψx = − 1

4π

∫∫ (
Jy
∂ψ

∂z
− Jz

∂ψ

∂y

)
dS,

Ψy = − 1

4π

∫∫ (
Jz
∂ψ

∂x
− Jx

∂ψ

∂z

)
dS.

The unit vector along the η coordinate almost coincides with
the unit vector along z, that is Jz = Jη in the leading order,
but the correction produces the Jr component

Jr = −a
b

η√
1− η2

Jη.

Using the fact that Jη = Hϕ, Jϕ = −Hη and the expression

Hη =
−i

√
kbχτ

√
1− η2

(
2τ
∂Eϕ
∂τ

+ Eϕ +
∂Hϕ

∂ϕ

)
. (60)

it is relatively straightforward to get

Jz = Hϕ, Jr = −a
b

η√
1− η2

Hϕ,

Jϕ =
i

ka
√

1− η2

(
2
∂Eϕ
∂τ
− ∂Hϕ

∂ϕ

)
with the Cartesian components defined by

Jx = Jr cosϕ− Jϕ sinϕ, Jy = Jr sinϕ+ Jϕ cosϕ.

Let us now consider the gradient of ψ. The differentiation
by z in the leading order reduces to the multiplication by −ik
and the other derivatives can be expressed by the formulae

∂ψ

∂x
=

1

a
√

1− η2

((
2
∂ψ

∂τ
− iχηψ

)
cosϕ− ∂ψ

∂ϕ
sinϕ

)
,

10



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)
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Fig. 6. Amplitudes of the induced current on the spheroid no. 1 (FEM – red, asymptotics – blue).
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Fig. 7. Amplitudes of the induced current on the spheroid no. 2 (FEM – red, asymptotics – blue).
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Fig. 8. Amplitudes of the induced current on the spheroid no. 3 (FEM – red, asymptotics – blue).
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∂ψ

∂y
=

1

a
√

1− η2

((
2
∂ψ

∂τ
− iχηψ

)
sinϕ+

∂ψ

∂ϕ
cosϕ

)
.

The substitution of the above expressions to the formula for
Ψ yields

Ψx = − b

4π

1∫
−1

dη

2π∫
0

dϕ

{(
2
∂Eϕ
∂τ
− ∂Hϕ

∂ϕ

)
ψ cosϕ

−Hϕ

(
2
∂ψ

∂τ
sinϕ+

∂ψ

∂ϕ
cosϕ

)}
,

Ψy = − b

4π

1∫
−1

dη

2π∫
0

dϕ

{(
2
∂Eϕ
∂τ
− ∂Hϕ

∂ϕ

)
ψ sinϕ

+Hϕ

(
2
∂ψ

∂τ
cosϕ− ∂ψ

∂ϕ
sinϕ

)}
.

Next, we compute the integrals in ϕ. The subintegral terms
contain products of three trigonometric functions. Evidently
the non-zero contributions are due to terms containing the
products of three cosines, or two sines and one cosine with
|m− n| = 1. One can show that in view of the symmetry of
the problem, the following formulas hold :

ΨTE
x =

+∞∑
n=0

ΨTE
nx cos(nϕ0), ΨTE

y =

+∞∑
n=1

ΨTE
ny sin(nϕ0),

ΨTM
x =

+∞∑
n=1

ΨTM
nx sin(nϕ0), ΨTM

y =

+∞∑
n=0

ΨTM
ny cos(nϕ0).

For the harmonics we get

Ψnx = − b
4

1∫
−1

{
ψn

(
∂

∂τ
+

1

2

)
(En+1 + En−1)

± (Hn+1 −Hn−1)

(
∂

∂τ
+

1

2

)
ψn

}
dη,

Ψny = − b
4

1∫
−1

{
ψn

(
∂

∂τ
+

1

2

)
(En+1 − En−1)

± (Hn+1 +Hn−1)

(
∂

∂τ
+

1

2

)
ψn

}
dη

with the plus signs used for the TM incident wave and the
minus signs to be used for the TE case.

When substituting the expressions (40) through (43) the
terms with the indexes n − 2 and n + 2 appear in these
formulas. With the help of the boundary conditions (27), (28)
these terms can be excluded. Furthermore, we change the order
of integration and use the formula

1∫
−1

(
1− η
1 + η

)i(t−s)
dη

1− η2
= πδ(t− s),

which reduces the integration by s and results in the
compensation of the terms containing Whittaker functions

Mit,n/2(−iχ), implying that the incident field gives no conrt-
ibution. In the other terms the Wronskians of Whittaker func-
tions (47) are separated, and after substituting the expressions
given in (36), we get

ΨTE
nx =

ib(−1)n+1

π(n!)3ββ0

+∞∫
−∞

Γ2

(
n+1

2
+ it

)
Γ

(
n+1

2
− it

)
×

×Mit,n/2(iβ2)Mit,n/2(iβ2
0)
(
TTE
n−1 +RTE

n+1

)
dt, (61)

ΨTE
ny =

ib(−1)n

π(n!)3ββ0

+∞∫
−∞

Γ2

(
n+1

2
+ it

)
Γ

(
n+1

2
− it

)
×

×Mit,n/2(iβ2)Mit,n/2(iβ2
0)
(
TTE
n−1 −RTE

n+1

)
dt, (62)

ΨTM
nx =

ib(−1)n+1

π(n!)3ββ0

+∞∫
−∞

Γ2

(
n+1

2
+ it

)
Γ

(
n+1

2
− it

)
×

×Mit,n/2(iβ2)Mit,n/2(iβ2
0)
(
TTM
n−1 −RTM

n+1

)
dt, (63)

ΨTM
ny =

ib(−1)n

π(n!)3ββ0

+∞∫
−∞

Γ2

(
n+1

2
+ it

)
Γ

(
n+1

2
− it

)
×

×Mit,n/2(iβ2)Mit,n/2(iβ2
0)
(
TTM
n−1 +RTM

n+1

)
dt. (64)

In the above formulas we have used the fact that TTE
−1 ≡ 0

and TTM
−1 ≡ 0.

We substitute the expressions (44) through (46) and (48),
for the reflection coefficients in the expressions given in
(61) throught (63), and rewrite Whittaker functions in terms
of the Coulomb wave functions. These very cumbersome,
but straightforward derivations result in the following final
expressions for the far field amplitudes of the magnetic vector:

ΨTE
x =

8ib

πββ0

+∞∫
−∞

{
c0 + d0 + (bTE + c1 + d1) cosϕ

+

+∞∑
`=2

(a` + b` + c` + d`) cos(`ϕ)

}
dt, (65)

ΨTE
y =

8ib

πββ0

+∞∫
−∞

{
(−bTE + c1 + d1) sinϕ

+

+∞∑
`=2

(−a` − b` + c` + d`) sin(`ϕ)

}
dt, (66)

ΨTM
x =

8ib

πββ0

+∞∫
−∞

{
(−bTM + c1 + d1) cosϕ

+

+∞∑
`=2

(a` − b` + c` − d`) sin(`ϕ)

}
dt, (67)
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Fig. 9. The RCS (in dB) for the spheroid no. 1 at 1GHz (upper) and 2GHz (lower) for the axial incidence (left) and for the TM wave incident at ϑ = 5◦

(right).

ΨTM
y = − 8ib

πββ0

+∞∫
−∞

{
c0 − d0 + (bTM + c1 − d1) cosϕ

−
+∞∑
`=2

(a` − b` − c` + d`) cos(`ϕ)

}
dt. (68)

Here

a` = F(`−1)/2

(
t,

1

2
β2

)
F(`−3)/2

(
t,

1

2
β2
0

)
1

z`−1
,

bTE = F0

(
t,

1

2
β2

)
F0

(
t,

1

2
β2
0

)
F0

(
−t, 12χ

)
H+

0

(
−t, 12χ

) ,
bTM = F0

(
t,

1

2
β2

)
F0

(
t,

1

2
β2
0

)
Ḟ0

(
−t, 12χ

)
Ḣ+

0

(
−t, 12χ

) ,
b` = F `−1

2

(
t,

1

2
β2

)
F `−1

2

(
t,

1

2
β2
0

)
y`−1
z`−1

,

c` = F `−1
2

(
t,

1

2
β2

)
F `−1

2

(
t,

1

2
β2
0

)
y`
z`
,

d` = F `−1
2

(
t,

1

2
β2

)
F `+1

2

(
t,

1

2
β2
0

)
1

z`
,

y` = H+
`−1
2

(
−t, 1

2
χ

)
Ḟ `+1

2

(
−t, 1

2
χ

)
+ Ḣ+

`−1
2

(
−t, 1

2
χ

)
F `+1

2

(
−t, 1

2
χ

)
,

z` = H+
`−1
2

(
−t, 1

2
χ

)
Ḣ+

`+1
2

(
−t, 1

2
χ

)
+ Ḣ+

`−1
2

(
−t, 1

2
χ

)
H+

`+1
2

(
−t, 1

2
χ

)
.

We illustrate the approximating properties of the above
asymptotics by comparing the RCS

RCS = 4π‖Ψ‖2

computed by using these formulas and with the help of
HFSS of ANSYS1. For this purpose, we choose the same test

1Computations were performed by D. Shevnin, CADFEM CIS Branch in
North-West Federal Region.
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Fig. 10. The RCS (in dB) for the spheroid no. 2 at 1GHz (upper) and 2GHz (lower) for the axial incidence (left) and for the TM wave incident at ϑ = 5◦

(right).

problems as specified in Table I. Red and magenta colours
are used in the Figs. 9 through 11 to identify the results of
numerical computations and green and blue curves correspond
to the asymptotic results.

G. The total scattering cross-section

The formulas (65) throught (68) provide the asymptotics
of the far field amplitude of the magnetic field under the
assumption that the angles ϑ and ϑ0 are small, i.e., the
directions of the incidence and of the observation are in
narrow cones near the axis of the body. Nevertheless, these
formulas enable us to find the total scattering cross-section
σ(ϑ0). According to the “optical” theorem [3] we have

σ(ϑ0) =
4π

k
Im 〈Ψ(ϑ0, ϑ0, 0),h〉 , (69)

where h is the magnetic polarization vector of the incident
wave and the angular brackets denote scalar product.

The magnetic vector is directed along −ex in the TE
case and along ey in the TM case. Therefore, we have,〈
Ψ+1,h+1

〉
= −Ψ+1

x ,
〈
Ψ−1,h−1

〉
= Ψ−1y .

To exclude the dependence of the effective cross-section on
the size of the spheroid we normalize it by the visible cross-
section σ0 = πa2

√
1 + β2

0/χ and define Σ = σ/σ0. Then

ΣTE = − 32

πχβ2
√

1 + β2
0/χ
×

×
+∞∑
n=0

Im

+∞∫
−∞

{
bTE +

+∞∑
`=0

(b`+2 + c` + 2d`)

}
dt, (70)

ΣTM = − 32

πχβ2
√

1 + β2
0/χ
×

×
+∞∑
n=0

Im

+∞∫
−∞

{
bTM +

+∞∑
`=0

(b`+2 + c` − 2d`)

}
dt. (71)

For the case of β = 0, the representations (70) and (71)
contain an ambiguity, and by avoiding it we conclude that
the only nonzero term is c0. The formulas then simplify and
lose the dependence on the polarization of the incident wave;

14



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)

−30◦ −20◦ −10◦ 0◦ 10◦ 20◦ ϑ

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

−30◦ −20◦ −10◦ 0◦ 10◦ 20◦ ϑ

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

−30◦ −20◦ −10◦ 0◦ 10◦ 20◦ ϑ

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

−30◦ −20◦ −10◦ 0◦ 10◦ 20◦ ϑ

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

Fig. 11. The RCS (in dB) for the spheroid no. 3 at 1GHz (upper) and 2GHz (lower) for the axial incidence (left) and for the TM wave incident at ϑ = 5◦

(right).

hence, we have

Σ = −16

χ
Im


+∞∫
−∞

y0
z0

dλ

1 + e2πλ

 . (72)

The dependencies of the total scattering cross-section on the
parameter of elongation χ are presented in Fig. 12. We see that
the rate of elongation may significantly affect the value of the
scattering cross-section. As χ grows, and the body becomes
less elongated, the effective cross-section tends to its classical
high-frequency limit of two.

V. CONCLUSION

For elongated bodies, the induced currents of the forward
wave generate the far field amplitudes in the forward cone
near the axis. For larger observation angles ϑ, it is necessary
to consider the currents near the ends of the body. However
for ϑ ≈ π the main contribution to Ψ again comes from
the currents in the middle part of the spheroids, however the
backward wave plays a role in this case. The other contribution
to the back-scattered field is due to the specular reflection. The

contribution of the specular point and that of the backward
wave can both be found in the framework of the approach
presented in this paper. For the case of acoustic waves, this
has been done in [27].

In addition to spheroids, some other types of elongated
bodies can also be considered. The parabolic equations enable
us to use the separation of variables for the case in which
the quantity ρt(s)ρ

−1/3(s) is constant. This is the case for
spheroids, hyperboloids, paraboloid and surfaces that have
no curvature: cones and cylinders that have been analyzed
in [28]. The case of a paraboloid does not give any new
results compared to those of Fock [2]. For the one-sheeted
hyperboloid, some results have been presented in [29]. The
case of a narrow cone has been studied in [30]. Besides
the bodies of revolution one can consider infinite cylinders
with a strongly elongated cross-section. For this case, the
electromagnetic problems reduce to scalar diffraction and the
results of [31] are applicable.

We have considered only the case of plane wave incidence,
however other sources are possible. For the case of an acoustic
point source the reader is referred to [32]. The other possibility
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Fig. 12. The total scattering cross-section as a function of the elongation
parameter χ. Solid black line is for β = 0, dash-dotted — for β = 0.5,
dashed — for β = 1, dotted — for β = 2. Red is for the TE case and blue
is for the TM case.

is to consider Gaussian beams incident on an elongated body.
All the above listed possible directions of further research

are almost straightforward although they do require derivations
that are rather cumbersome.

The other, and more difficult questions pertain to the follow-
ing two aspects. The first of these is the generalization of this
technique to the case of the impedance boundary condition,
making it possible for it to handle dielectric bodies. The
difficulty here comes from the use the τ coordinate which
is related to the normal n by the formula

∂

∂τ
=

1

2a
√

1− η2
∂

∂n
,

which contains η. The second challenge is to apply the
approach to bodies whose shapes are not close to one of the
canonical surfaces, but are composed of parts each of which
can be approximated by a canonical surface. For example, the
ogival geometry can be considered as a combination of circular
cones at the ends and a spheroid in the middle part. We note
that while asymptotic representations for the diffracted fields
by cones and spheroids are known, the issue of their matching
remains an open question.

REFERENCES

[1] V. A. Fock “The distribution of currents induced by a pane wave on the
surface of a conductor”, Journ. of Phys. of the USSR, vol. 10, no. 2,
pp. 130–136, 1946.

[2] V. A. Fock “Theory of diffraction from the paraboloid of revolution”,
in Diffraction of electromagnetic waves by some bodies of revolution,
Moscow, Sovetskoe Radio, pp. 5–56, in Russian, 1957.
see also V. A. Fock Electromagnetic Diffraction and Propagation Prob-
lems, (International Series of Monographs on Electromagnetic Waves),
Frankfurt, Pergamon Press, Chapter 3, 1965.
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