Millimeter-Wave Antenna Arrays with Beam Steering for 5G Mobile Terminals

Author(s): Shuai Zhang
SourceFERMAT, Volume 37, Communication 1, Jan.-Feb., 2020

Abstract As the key technologies in future 5G cellular communication systems, millimeter wave (mmwave) will be applied for 5G mobile handsets. In these systems, beam steerable arrays with high gain have to be utilized at both base stations and user terminals in order to overcome the path loss.  In mobile terminals, there is very limited space left for 5G arrays after accommodating 2G, 3G and 4G antenna systems. The only power supply in a cellphone is a small battery, which requires low-loss and low-cost beamforming. Moreover, user’s mobility and blockage also rise some more new issues. This presentation will introduce the challenges in mm-wave 5G mobile handsets. As some examples, recent progress of the antenna group at Aalborg University will be introduced in the area of mm-wave beam-steerable antenna arrays and their biological effects for 5G mobile terminals. In the base stations, massive MIMO is widely used in sub 6 GHz and in mmwave in the future. The mutual coupling between array elements is highly preferred to be lower than – 25 dB in consideration of active VSWR and system requirements. Moreover, the decoupling method should also be wideband and without significantly impacting the radiation patterns of array elements. This presentation will introduce a transmission line base method for isolation enhancement. Finally, the new anechoic chamber in Aalborg University will be highlighted.

Index Termsmmwave antenna array, mobile handset, massive MIMO antenna, base station, mutual coupling, anechoic chamber

View PDF

Millimeter-Wave Antenna Arrays with Beam Steering for 5G Mobile Terminals

© Copyright 2014 FERMAT | All Rights Reserved
"FERMAT is published under the auspices of the University of Central Florida"
ISSN 2470-4202